MODELAGEM DO PROCESSO DE REVESTIMENTO POR PULVERIZAÇÃO DE PLASMA USANDO SOLUÇÕES ROBUSTAS COM BASE EM NOVOS MÉTODOS DE INTELIGÊNCIA

Autores

  • Mehdi Abedi-Varaki Islamic Azad University, Iran
  • Shahram Mollaiy- Berneti

DOI:

https://doi.org/10.5902/2179460X25394

Palavras-chave:

Revestimento de spray de plasma, Propriedades de revestimento, Máquina de vetores de apoio de mínimos quadrados, rede neural polinomial de tipo GMDH.

Resumo

Este estudo adota duas técnicas de inteligência computacional, ou seja, a máquina de vetores de suporte de mínimos quadrados (LS-SVM) e o grupo de método de gerenciamento de dados (GMDH) tipo rede neural polinomial para modelar o processo de revestimento por pulverização de plasma. As qualidades do revestimento foram avaliadas determinando sua espessura, porosidade e microdureza. Quatro parâmetros, incluindo o caudal de gás primário, distância de espera, taxa de fluxo de pó e corrente de arco que afetaram as propriedades do revestimento foram escolhidos como variáveis de entrada no desenvolvimento do modelo. Os desempenhos dos modelos desenvolvidos foram avaliados pelo cálculo dos desvios entre os valores previstos e reais com base nos índices de desempenho do erro absoluto médio (MAE), erro quadrático médio (RMSE) e coefi- ciente de determinação (R2). Os resultados demonstram a alta capacidade da rede neural polinomial de LS-SVM e GMDH para predição de valores de espessura e microdureza com menor MAE, RMSE e R2 mais alto. Devido ao alto comportamento de não-linearidade da porosidade no processo de revestimento, os métodos propostos não são capazes de modelar a porosidade muito bem.

Downloads

Não há dados estatísticos.

Referências

ABEDI-VARAKI M, DAVTALAB M. Site selection for installing plasma incinerator reactor using the GIS in Rudsar county, Iran. Environmental monitoring and assessment.2016;188, 1-16.

ABEDI-VARAKI M, GANJOVI A, SHOJAEI F, HASSANI Z. A model based on equations of kinetics to study nitrogen dioxide behavior within a plasma discharge reactor. Journal of Environmental Health Science and Engineering.2015;13, 1.

ABEDI-VARAKI M, JAFARI S. Self-focusing and de-focusing of intense left and right-hand polarized laser pulse in hot magnetized plasma: laser out-put power and laser spot-size. Optik-International Journal for Light and Electron Optics.2017.

AMANIFARD N, NARIMAN-ZADEH N, FARAHANI M, KHALKHALI A. Modelling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks. Energy Conversion and Management.2008;49, 2588-2594.

AZARMI F, COYLE T, MOSTAGHIMI J. Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 coatings. Journal of Thermal Spray Technology.2008;17, 144-155.

BATHIE W, Fundamentals of gas turbines, 1996. John Wiley, New York.

BURLACOV I, JIRKOVSKÝ J, MÜLLER M, HEIMANN R. Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy. Surface and Coatings Technology.2006;201, 255-264.

CLARKE D, LEVI C. Materials design for the next generation thermal barrier coatings. Annual Review of Materials Research.2003;33, 383-417.

CRISTIANINI N, SHAWE-TAYLOR J, 2000. An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.

DATTA S, PRATIHAR D K, BANDYOPADHYAY P P. Modeling of plasma spray coating process using statistical regression analysis. The International Journal of Advanced Manufacturing Technology.2013;65, 967-980.

DE BRABANTER K, KARSMAKERS P, OJEDA F, ALZATE C, DE BRABANTER J, PELCKMANS K, DE MOOR B, VANDEWALLE J, SUYKENS J. LS-SVMlab toolbox user’s guide. ESAT-SISTA Technical Report.2011;10.

DE VILLIERS LOVELOCK H, RICHTER P, BENSON J, YOUNG P. Parameter study of HP/HVOF deposited WC-Co coatings. Journal of thermal spray technology.1998;7, 97-107.

EVANS A G, CLARKE D R, LEVI C G. The influence of oxides on the performance of advanced gas turbines. Journal of the European Ceramic Society.2008;28, 1405-1419.

EVANS A G, MUMM D R, HUTCHINSON J W, MEIER G H, PETTIT F S. Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science.2001;46, 505-553.

GUESSASMA S, MONTAVON G, GOUGEON P, CODDET C. Designing expert system using neural computation in view of the control of plasma spray processes. Materials & design.2003;24, 497-502.

IVAKHNENKO A, MÜLLER J-A. Self-organization of nets of active neurons. Systems Analysis Modelling Simulation.1995;20, 93-106.

KANTA A-F, MONTAVON G, VARDELLE M, PLANCHE M-P, BERNDT C C, CODDET C. Artificial neural networks vs. fuzzy logic: simple tools to predict and control complex processes—application to plasma spray processes. Journal of Thermal Spray Technology.2008;17, 365-376.

KIM K-J. Financial time series forecasting using support vector machines. Neurocomputing.2003;55, 307-319.

KINGSWELL R, SCOTT K, WASSELL L. Optimizing the vacuum plasma spray deposition of metal, ceramic, and cermet coatings using designed experiments. Journal of Thermal Spray Technology.1993;2, 179-185.

LEVI C G. Emerging materials and processes for thermal barrier systems. Current Opinion in Solid State and Materials Science.2004;8, 77-91.

LI J, LIAO H, DING C, CODDET C. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments. Journal of Materials Processing Technology.2005;160, 34-42.

PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications. Science.2002;296, 280-284.

PEREPEZKO J H. The hotter the engine, the better. Science.2009;326, 1068-1069.

RAIZER Y, 1987. Gas discharge physics Springer Verlag. Berlin.

RODRıGUEZ J, MARTıN A, FERNÁNDEZ R, FERNÁNDEZ J. An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear.2003;255, 950-955.

SARAVANAN P, SELVARAJAN V, JOSHI S, SUNDARARAJAN G. Experimental design and performance analysis of alumina coatings deposited by a detonation spray process. Journal of Physics D: Applied Physics.2001;34, 131.

SUYKENS J A, DE BRABANTER J, LUKAS L, VANDEWALLE J. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing.2002a;48, 85-105.

SUYKENS J A, VAN GESTEL T, DE BRABANTER J, DE MOOR B, VANDEWALLE J, SUYKENS J, VAN GESTEL T, 2002b. Least squares support vector machines. World Scientific.

SUYKENS J A, VANDEWALLE J. Least squares support vector machine classifiers. Neural processing letters.1999;9, 293-300.

VAPNIK V N, VAPNIK V, 1998. Statistical learning theory. Wiley New York.

VAßEN R, JARLIGO M O, STEINKE T, MACK D E, STÖVER D. Overview on advanced thermal barrier coatings. Surface and Coatings Technology.2010;205, 938-942.

WANG Y, COYLE T. Optimization of solution precursor plasma spray process by statistical design of experiment. Journal of Thermal Spray Technology.2008;17, 692-699.

Downloads

Publicado

2017-11-18

Como Citar

Abedi-Varaki, M., & Berneti, S. M.-. (2017). MODELAGEM DO PROCESSO DE REVESTIMENTO POR PULVERIZAÇÃO DE PLASMA USANDO SOLUÇÕES ROBUSTAS COM BASE EM NOVOS MÉTODOS DE INTELIGÊNCIA. Ciência E Natura, 39(3), 553–568. https://doi.org/10.5902/2179460X25394

Edição

Seção

Física

Artigos mais lidos pelo mesmo(s) autor(es)