The singular value decomposition of a uniform matrix

Authors

  • Antonio Francisco Iemma Departamento de Matemática e Estatística, Escola Superior de Agricultura "Luiz de Queiroz", USP - Piracicaba, SP.

DOI:

https://doi.org/10.5902/2179460X24924

Abstract

In this pape is presented a simple procedure for determination of singular value of uniform non negative matrices. This procedure is recommended for teachers of elementary courses in statistics to students with small basis in matrix algebra.

Downloads

Download data is not yet available.

References

BOX, G.E.P. A general distribuition theory for a class of like lihood criteria. Biometrika, 36: 317-346, 1949.

BOX, G.E.P. Some theorems on quadratic forms applied in the study of analysis of variance problems, II. Effects of inequality of variance and correlation between errors in a two way classification. Ann. Math. Stat, 25: 484-498, 1954.

GEISSER, S. Multivariate analysis of variance for a special case. JASA, 8: 660-669, 1963.

GRAYBILL, F.A. Theory and Application of the Linear Models. Duxbury Press, Massachussets, 1976.

IEMMA, A.F. Análise de experimentos em parcelas subdivididas com tratamentos principais dispostos em blocos incompletos balanceados. ESALQ/USP, Piracicaba, 145 p. (Tese de Doutoramento), 1981.

IEMMA, A.F. e H. CAMPOS. Variância dos contrastes clássicos nos experimentos com parcelas subdivididas em blocos incompletos balanceados. Ciência e Natura, 3: 21-27, 1981.

LANCASTER, H.O. The Helmert matrices. Am. Math. Monthly, 72(1): 4-12, 1965.

RAO, C.R. Advanced Statistical Methods in Biometric Research. MacMillan Publishing to, New York, 1952.

SCHEFFÉ, H. The Analysis of Variance. John Wiley, New York, 1959.

SEARLE, S.R. Linear Models, John Wiley, New York, 1971.

WILKS, S.S. Sample criterion for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. An. Mat. Stat., 17: 257-281, 1946.

Published

1982-12-13

How to Cite

Iemma, A. F. (1982). The singular value decomposition of a uniform matrix. Ciência E Natura, 4(4), 21–26. https://doi.org/10.5902/2179460X24924