### BAYESIAN AND MAXIMUM LIKELIHOOD INFERENCE FOR THE DEFECTIVE GOMPERTZ CURE RATE MODEL WITH COVARIATES: AN APPLICATION TO THE CERVICAL CARCINOMA STUDY

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: Proceedings of the 2nd International Symposium on Information Theory, pp. 267–281.

Balka, J., Desmond, A. F., McNicholas, P. D. (2011). Bayesian and likelihood inference for cure rates based on defective inverse Gaussian regression models. Journal of Applied Statistics, 38(1), 127–144.

Brenna, S. M., Silva, I. D., Zeferino, L. C., Pereira, J. S., Martinez, E. Z., Syrjänen, K. J. (2004). Prognostic value of P53 codon 72 polymorphism in invasive cervical cancer in Brazil. Gynecologic Oncology, 93(2), 374–380.

Cancho, V. G., Bolfarine, H. (2001). Modeling the presence of immunes by using the exponentiated-Weibull model. Journal of Applied Statistics, 28(6), 659–671.

Cantor, A. B., Shuster, J. J. (1992) Parametric versus nonparametric methods for estimating cure rates based on censored survival data. Statistics in Medicine, 11(7), 931–937.

Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics, 38(4), 1041–1046.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2013). Bayesian Data Analysis, 3o edn. Chapman and Hall/CRC.

Gieser, P. W., Chang, M. N., Rao, P. V, Shuster, J. J., Pullen, J. (2014). Modelling cure rates using the Gompertz model with covariate information. Statistics in Medicine, 17(8), 831–839.

Henningsen, A., Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26(3), 443–458.

Klein, J. P., Moeschberger, M. L. (2005). Survival analysis: techniques for censored and truncated data, 2o edn. Springer Science & Business Media.

Lambert, P. C., Thompson, J. R., Weston, C. L., Dickman, P. W. (2007). Estimating and modeling the cure fraction in population-based cancer survival analysis. Biostatistics, 8(3), 576–594.

Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., Schabenberger, O. (2006). SAS for Mixed Models, 2o edn. SAS Institute.

Lunn, D. J., Thomas, A., Best, N., Spiegelhalter, D. (2000). WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10(4), 325–337.

Maller, R. A., Zhou, X. (1996). Survival Analysis with Long-Term Survivors, Wiley.

Millar, R. B. (2011). Maximum likelihood estimation and inference: with examples in R, SAS and ADMB, Vol. 111, Wiley.

R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http: //www.R-project.org.

Rocha, R. F., Tomazella, V. L. D., Louzada, F. (2014). Bayesian and classic inference for the Defective Gompertz Cure Rate Model. Revista Brasileira de Biometria, 32(1), 104–114.

Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F., Eudes, A. (2015). New defective models based on the Kumaraswamy family of distributions with application to cancer data sets. Statistical Methods in Medical Research, 1–23.

Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F. (2017). A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling. Computational Statistics & Data Analysis, 107, 48–63.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Linde, A. (2014). The deviance information criterion: 12 years on. Journal of the Royal Statistical Society: Series B Statistical Methodology, 76(3), 485–493.

DOI: http://dx.doi.org/10.5902/2179460X24118

### Refbacks

- There are currently no refbacks.

**Ciência e Natura**

EISSN *2179-460X*

ISSN *0100-8307*

DOI *10.5902*

Access since January, 18th, 2013.

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).