Existência e Multiplicidade de Soluções para uma equação elítica quase linear do tipo Kirchhoff

Authors

  • Francisco Helmuth Soares Dias Universidade Federal do Rio Grande do Sul
  • Márcio Luís Miotto Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X21418

Keywords:

Equação de Kirchhoff, p-Laplaciano, multiplicidade de soluções, métodos variacionais

Abstract

  

Downloads

Download data is not yet available.

References

ALVES, C., O, CORRÊA, F. J. S. A., FIGUEIREDO, G. M. (2010). On a class of nonlocal elliptic problems with critical growth Differential Equations and Applications, 2, 409–417.

ALVES, C. O., CORRÊA, F. J. S. A., Ma, T. F. (2005). Positive solutions for a quasilinear elliptic equation of Kirchhoff type.Computers and Mathematics with Applications, 49, 85–93.

CAMMAROTO, F., VILASI, L. (2011). Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacianoperator. Nonlinear Analysis, 74, 1841–1852.

COLASUONNO, F., PUCCI, P. (2011). Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations. NonlinearAnalysis: Theory, Methods & Applications, 74, 5962–5974.

CORRÊA, F., FIGUEIREDO, G. (2006). On an elliptic equation of p-Kirchhoff type via variational methods. Bulletin of theAustralian Mathematical Society, 74, 263–277.

DAI, G. (2009). Infinitely many solutions for a p(x)-Laplacian equation in RN. Nonlinear Analysis: Theory, Methods &Applications, 71, 1133–1139.

DAI, G., LIU, D. (2009). Infinitely many positive solutions for a p(x)-Kirchhoff-type equation. Journal of MathematicalAnalysis and Applications, 359, 704–710.

DAI, G., WEI, J. (2010). Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichletboundary condition. Nonlinear Analysis: Theory, Methods & Applications, 73, 3420–3430.

FERRARA, M., KHADEMLOOB, S., HEIDARKHANI, J. A. (2014). Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems. Applied Mathematics and Computation, 234, 316–325.

DE FIGUEIREDO, D. G. (1989). Lectures on the Ekeland Variational Principle with applications and detours. Springer-Verlag.

GUO, Y., NIE, J. (2015). Existence and multiplicity of nontrivial solutions for p-Laplacian Schrodinger-Kirchhoff-type equations. Journal of Mathematical Analysis and Applications, 428, 1054–1069.

HSSINI, E. M., MASSAR, M., TALBI, M., TSOULI, N. (2013). Infinitely many solutions for nonlocal elliptic p-Kirchhoff type equation under Neumann boundary condition. International Journal of Mathematical Analysis, 7, 1011–1022.

HSSINI, E. M., MASSAR, M., TSOULI, N. (2015). Existence and multiplicity of solutions for a p(x)-Kirchhoff type problems. Bol Soc Paran Mat, 33, 201–215.

HUANG, J., CHEN, C., XIU, Z. (2013). Existence and multiplicity results for a p-Kirchhoff equation with a concave-convex term. Applied Mathematics Letters, 26, 1070–1075.

KIRCHHOFF, G. (1883). Mechanik. Teubner.

LI, S., WU, S., ZHOU, H. S. (2002). Solutions to semilinear elliptic problems with combined nonlinearities. Journal of Differential Equations, 185, 200–224.

LIANG, Z., LI, F., SHI, J. (2013). Positive solutions to Kirchhoff type equations with nonlinearities having prescribed asymptotic behavior. Annales de I Henri Poincare (C) Nonlinear Analysis, 31, 155–167.

MIOTTO, M. L. (2010). Multiple solutions for elliptic problem in RN with critical Sobolev exponent and weight function. Communications on Pure and Applied Analysis, 9, 233–248.

MIOTTO, M. L. (2014). Multiplicidade de soluções para uma classe de problemas quaselineares críticos em RN envolvendo função peso com mudança de sinal. Ciência e Natura, 36, 367–379.

PEI, R. (2012). On a p-Laplacian equation of Kirchhoff-type with a potential asymptotically linear at infinity. Journal of Mathematical Analysis, 6(27), 1347–1353.

PERERA, K., Zhang, Z. (2006). Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. Journal of Mathematical Analysis and Applications, 317, 456–463.

SCHECHTER, M. A. (1991). A variation of the Mountain Pass lemma and applications. Journal London Math Soc, 44, 491–502.

SUN, J. J., Tang, C. L. (2011). Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Analysis, 74, 1212–1222.

VAZQUEZ, J. L. (1984). Strong Maximum Principle for some quasilinear elliptic equations. Applied Mathematics and Optimization, 12, 191–202.

Published

2016-12-29

How to Cite

Dias, F. H. S., & Miotto, M. L. (2016). Existência e Multiplicidade de Soluções para uma equação elítica quase linear do tipo Kirchhoff. Ciência E Natura, 39(1), 74–83. https://doi.org/10.5902/2179460X21418

Issue

Section

Mathematics