Estimativas de Votos de Dilma Rousseff nas Eleições Presidenciais de 2010 sob o Âmbito do Bolsa Família

Autores

  • Pedro Monteiro Almeida Universidade Federal de Pernambuco, Cidade Universitária Recife/PE, 50740--540, Brasil
  • Tatiene Correia Souza Universidade Federal da Paraíba Cidade Universitária João Pessoa/PB, 58089--900, Brasil

DOI:

https://doi.org/10.5902/2179460X16021

Palavras-chave:

Estatística aplicada. Regressão beta. Bolsa Família.

Resumo

O objetivo deste artigo é  avaliar o impacto dos gastos com o programa Bolsa Família nas eleições presidenciais de 2010. Ajustamos o modelo de regressão beta para explicar o percentual de votos válidos de Dilma Rousseff no segundo turno nas eleições de 2010 no nordeste. Alguns fatores como, o percentual de pobres, o PIB municipal, o percentual de votos de Lula em 2006 e o gasto per capita com o programa Bolsa Família exerceram efeito positivo em relação ao percentual de votos de Dilma nas eleições de 2010. Calculamos o impacto do Bolsa Família nas eleições de 2010, verificamos que se não houvesse gasto com o Bolsa Família, a votação da presidente Dilma teria uma redução de aproximadamente 2.125 milhões de votos na Região Nordeste nas eleições de 2010.

Downloads

Não há dados estatísticos.

Biografia do Autor

Pedro Monteiro Almeida, Universidade Federal de Pernambuco, Cidade Universitária Recife/PE, 50740--540, Brasil

Mestrando em estatística pela universidade federal de pernambuco, área de atuação Regressão beta.

Tatiene Correia Souza, Universidade Federal da Paraíba Cidade Universitária João Pessoa/PB, 58089--900, Brasil

Departamento de Estatística, área: modelagem em regressão beta

Referências

Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (6), 716–723.

Almeida, L., 2011. A percepção das mulheres beneficiárias acerca do programa bolsa família da cidade de joão pessoa/pb. In: (Monografia em Serviço Social), Universidade Federal da Paraíba, João Pessoa. p. 69.

Assunção, R. M., 2001. Estatística espacial com aplicações em epidemiologia, economia e sociologia. In: São Carlos: 7a Escola de Modelos de Regressão.

Canêdo-Pinheiro, M., 2009. Bolsa família ou desempenho da economia? determinantes da reeleição de lula em 2006. In: Anais do XXXVII Encontro Nacional de Economia.

Carraro, A., Shikida, C., Monasterio, L., Araújo, A., Damião, O., 2007. "it is the economy, companheiro!": an empirical analysis of lula’s re-election based on municipal data. Economics Bulletin 29 (2), 976–991.

Cook, R., 1968. Assessment of local influence (with discussion).Journal of the Royal Statistical Society B 48, 133–169.

Cook, R., 1977. Detection of influential observation in linear regression. Technometrics 19 (1), 15–18.

Cribari-Neto, F., Souza, T. C., 2012. Testing inference in variable dispersion beta regressions. Journal of Statistical Computation and Simulation 82, 1827–1843.

Cribari-Neto, F., Zeleis, A., 2010. Beta regression in r. Journal of Statistical Software 34 (2).

Cribari-Neto, F., F., Pereira, T., T. L., 2013. Avaliação da eficiência de administrações municipais no estado de são paulo: Uma nova abordagem via modelos de regressão beta. Revista Brasileira de Biometria 31, 270– 294.

Espinheira, P., 2007. Regressão beta. Tese de doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo (USP).

Espinheira, P., Ferrari, S., Cribari-Neto, F., 2008a. Influence diagnostics in beta regression. Computational Statistics & Data Analysis 52 (9), 4417–4431.

Espinheira, P. L., Ferrari, S., Cribari-Neto, F., 2008b. On beta regression residuals. Journal of Applied Statistics 35, 407––419.

Ferrari, S., Cribari-Neto, F., 2004. Beta regression for modelling rates and proportions. Journal of Applied Statistics 31 (7), 799–815.

Ferrari, S., Espinheira, P. L., Cribari-Neto, F., 2011. Diagnostic tools in beta regression with varying dispersion. Statistica Neerlandica 65, 337–351.

Fisher, R., 1922. On the mathematical foundations of theoretical statistics. Philosophical Transactions of them Royal Society A 222, 309–68.

Instituto de pesquisa Datafolha, 2010. Avaliação do mgoverno do presidente Lula. Datafolha. URL http://datafolha.folha.uol.com.br/opiniaopublica/avaliacaodegoverno/presidente/lula/indice-1.shtml

Marques, R., 2013. Políticas de transferência de renda no brasil e na argentina. Revista de Economia Política 33 (2 (131)), 298–314.

McCullagh, P., Nelder, J., 1989. Generalized Generalized Linear Models., 1989. Chapman and Hall

Ministério de Desenvolvimento Social e Combate à Fome, 2010a. Bolsa Família. Cadastro Único. Governo Federal do Brasil, Brasil.URL http://www.mds.gov.br/bolsafamilia/Cadastrounico

Ministério de Desenvolvimento Social e Combate à Fome, 2010b. Gastos com Programas Assistenciais.Governo Federal.URL http://aplicacoes.mds.gov.br/sagi/miv/miv.php

Ministério do Desenvolvimento Social e Combate à Fome, Janeiro 2004. Bolsa família. condicionalidades. URL http://www.mds.gov.br/bolsafamilia/Condicionalidades

Moran, P. A. P., 1950. Notes on continuous stochastic phenomena. Biometrika 37, 17–23.

Presidência da República, janeiro 2004. Lei no 10.836. cria o programa bolsa família e da outras providências. URL http://www.planalto.gov.br/ccivil_03/Ato2004-2006/2004/Lei/L10.836.htm

Ramsey, J. B., 1969. Tests for specification errors in classical linear least squares regression analysis. Journal of the Royal Statistical Society, B 31, 350–371.

Rocha, A., Simas, A., 2011. Influence diagnostics in a general class of beta regression models. Test 20, 95– 119.

Silva, M., Yasbek, M., Geraldo, G., 2012. A política Social brasileira no século XXI (A prevalência dos programas de transferência de renda), 6th Edition. São Paulo: Cortez.

Simas, A., Barreto-Souza, W., Rocha, A., 2010. Improved estimators for a general class of beta regression models. Computational Statistics and Data Analysis 54, 348–366.

Smithson, M., Verkuilen, J., 2006. A better lemonsqueezer? maximum likelihood regression with beta–distribuited dependent variables. Psychological Methods 11, 54–71.

Souza, T. C., Cribari-Neto, F., 2013. Uma estimativa do impacto eleitoral do programa bolsa-família. Revista Brasileira de Biometria 31, 79–103.

Tribunal Superior Eleitoral, 2010a. Eleições presidenciais. Justiça Eleitoral, Brasil.URL http://www.tse.jus.br/eleicoes/eleicoes-anteriores

Tribunal Superior Eleitoral, 2010b. Estatística do eleitorado. Quantitativo.URL http://www.tse.jus.br/eleicoes/eleicoes-anteriores/eleicoes-2010/estatisticas-de-eleitorado

Wei, B.C.and Hu, Y., Fung, W., 1998. Generalized leverage and its applications. Scandinavian Journal of Statistics 25, 25 – 37.

Zucco, C., 2008. The president’s ’new’ constituency: Lula and the pragmatic vote in brazil’s 2006 presidential elections. Journal of Latin American Studies 40, 29–39.

Zucco, C., 2013. When payouts pay off: Conditional cash transfers and voting behavior in brazil 2002–10.American Journal of Political Science 57 (0), 810–822.

Downloads

Publicado

2015-01-20

Como Citar

Almeida, P. M., & Souza, T. C. (2015). Estimativas de Votos de Dilma Rousseff nas Eleições Presidenciais de 2010 sob o Âmbito do Bolsa Família. Ciência E Natura, 37(1), 12–22. https://doi.org/10.5902/2179460X16021

Edição

Seção

Estatística