Laurus Nobilis L. essential oil potentializes the activity of antibiotics against multirresistant bacteria

Authors

DOI:

https://doi.org/10.5902/2236583483845

Keywords:

Antibacterials, Escherichia coli, Essential oil, Laurus, Staphylococcus aureus

Abstract

Objective: The aim of this study was to evaluate the antibacterial and combined antibiotic activity of Laurus nobilis essential oil. Methods: The essential oil was obtained by hydrodistillation with a yield of 1%. Triplicate tests were carried out using the gas contact method to evaluate the antibacterial activity against multi-resistant strains of Escherichia coli 27 and Staphylococcus aureus 358. Petri dishes were filled with Brain Heart Infusion (BHI), the seeded bacteria and a sterile paper disk in the center. 100% L. nobilis essential oil was placed on the lid and incubated in an oven at 37°C for 24 hours, where the inhibition halo was observed. In the modulation test, antibiotic discs (amikacin, gentamicin, ciprofloxacin and norfloxacin) were placed in the center of the plates. After this procedure, the plate was inverted and 10 μL of oil was placed on the lids, allowing volatilization and interaction with the antibiotic discs. Results: In the direct activity it was seen that bacterial growth was not inhibited, i.e. the oil at a concentration of 10µL did not exhibit antibacterial activity. When the oil was associated with antibiotics, there was a modifying effect on the action of the antibiotics for both strains. Against S. aureus 358 there was a noticeable increase in the halo for all the antimicrobials used, with ciprofloxacin standing out as having a greater interaction with the oil. For E. coli 27 there was a 20% increase in the halo for each antimicrobial used. Conclusion: The essential oil of L. nobilis did not have a direct effect on the strains tested, but it was able to modulate the activity of all the antibiotics used for the two strains, demonstrating a significant combined effect.

Downloads

Download data is not yet available.

Author Biographies

Anna Caroline Santana de Sousa, Centro Universitário Dr. Leão Sampaio

Biomédica

Dárcio Luiz de Sousa Júnior, Universidade Regional do Cariri

Biomédico, especialista em Microbiologia Clínica (2016 - Unileão) e em Farmacologia Clínica (2018 - URCA) e atualmente mestrando em química biológica na Universidade Regional do Cariri - URCA. Tem experiência em modelos animais de inflamação, nocicepção e toxicidade, assim como atividade antimicrobiana e moduladora com batérias multirresistentes.

João Eudes Lemos de Barros, Universidade Federal do Ceará

Biólogo

Cícero Roberto Nascimento Saraiva, Centro Universitário Dr. Leão Sampaio

Biomédico

Rakel Olinda Macedo da Silva, Centro Universitário Dr. Leão Sampaio

Biomédica

Lívia Maria Garcia Leandro, Centro Universitário Dr. Leão Sampaio

Biomédica

Maria Karollyna do Nascimento Silva Leandro, Centro Universitário Dr. Leão Sampaio

Biomédica

References

Sá- Filho GF de, Silva AIB da, Costa EM da, Nunes LE, Ribeiro LH de F, Cavalcanti JRL de P, et al. Plantas medicinais utilizadas na caatinga brasileira e o potencial terapêutico dos metabólitos secundários: uma revisão. Res Soc Dev. 2021;10(13):e140101321096.

Ferreira LKN, Pedroso NA, Oliveira JR, Antiqueira LMOR. Plantas Medicinais do Cerrado dos Campos Gerais. Biodiversidade Bras - BioBrasil. 2022;12(1):309–17.

Borges W de S, Berlinck RGS, Scotti MT, Vieira PC. A Química de Produtos Naturais do Brasil no Século XXI. Quim Nova [Internet]. 2017 Jul 3;40(6):706–10. Available from: http://quimicanova.sbq.org.br/audiencia_pdf.asp?aid2=6617&nomeArquivo=AG20170110.pdf

Dalmolin J, Nakano RL, Marcusso PF, Boleta-Ceranto D de CF, Cogo J, Melo PGB de, et al. Mecanismos De Expressão De Resistência Aos Antibióticos E Saúde Pública. Arq Ciências da Saúde da UNIPAR. 2022;26(3):681–92.

Saboia C da S, Cardoso DT, Santos JV dos, Saboia C da S, Barbosa RTP, Teles AM, et al. Caracterização química e atividade antimicrobiana do óleo essencial e do extrato bruto do capim limão (Cymbopogon citratus). Res Soc Dev. 2022;11(7):e37611730064.

De Falco B, Grauso L, Fiore A, Bonanomi G, Lanzotti V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochem Anal [Internet]. 2022 Jul 30;33(5):696–709. Available from: https://onlinelibrary.wiley.com/doi/10.1002/pca.3121

Kasali FM, Kadima JN, Peter EL, Mtewa AG, Ajayi CO, Tusiimire J, et al. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. Front Pharmacol. 2021;12(October):1–40.

Choi YJ, Choi YK, Ko SG, Cheon C, Kim TY. Investigation of Molecular Mechanisms Involved in Sensitivity to the Anti-Cancer Activity of Costunolide in Breast Cancer Cells. Int J Mol Sci. 2023;24(4).

Barbosa CR dos S, Bezerra AH, Bezerra SR, Macêdo NS, Oliveira-Tintino CD de M, Costa JGM da, et al. Bioactivities of isolated and synthetic riparins of Aniba riparia (NEES) MEZ (LAURACEAE): A brief review. Phytochem Lett. 2022;52(October):149–60.

Farias KS, Alves FM, Santos-Zanuncio VS, de Sousa Jr PT, Silva DB, Carollo CA. Global distribution of the chemical constituents and antibacterial activity of essential oils in Lauraceae family: A review. South African J Bot [Internet]. 2023 Apr;155:214–22. Available from: https://doi.org/10.1016/j.sajb.2023.02.028

Damasceno CSB, Fabri Higaki NT, Dias JDFG, Miguel MD, Miguel OG. Chemical Composition and Biological Activities of Essential Oils in the Family Lauraceae: A Systematic Review of the Literature. Planta Med [Internet]. 2019 Sep 1;85(13):1054–72. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/a-0943-1908

M. Hürkul M, Sarialtin SY, Köroğlu A, Çoban T. In vitro inhibitory potential of avocado fruits, Persea americana (Lauraceae) against oxidation, inflammation and key enzymes linked to skin diseases. Rev Biol Trop [Internet]. 2021 Feb 19;69(2):472–81. Available from: https://revistas.ucr.ac.cr/index.php/rbt/article/view/41494

Souza-Junior FJC, Luz-Moraes D, Pereira FS, Barros MA, Fernandes LMP, Queiroz LY, et al. Aniba canelilla (Kunth) Mez (Lauraceae): A Review of Ethnobotany, Phytochemical, Antioxidant, Anti-Inflammatory, Cardiovascular, and Neurological Properties. Front Pharmacol [Internet]. 2020 May 26;11(May):1–14. Available from: https://www.frontiersin.org/article/10.3389/fphar.2020.00699/full

Ngbolua K-N. A mini-review on the Phytochemistry and Pharmacology of the medicinal plant species Persea americana Mill. (Lauraceae). Discov Phytomedicine [Internet]. 2019 Jul 15;6(3). Available from: https://www.phytomedicine.ejournals.ca/index.php/phytomedicine/article/view/99

Fernandez CMM, da Rosa MF, Fernandez ACAM, Bortolucci W de C, Ferreira FBP, Linde GA, et al. Essential oil and fractions isolated of Laurel to control adults and larvae of cattle ticks. Nat Prod Res [Internet]. 2020 Mar 3;34(5):731–5. Available from: https://doi.org/10.1080/14786419.2018.1495637

Lima WA de, Fernandes LA. Avaliação das atividades de suscetibilidade e sinergismo com o óleo essencial de Laurus nobilis (Lauraceae) e fármacos antimicrobianos contra cepas bacterianas. Rev Fitos [Internet]. 2022 Dec 20;16(4):431–42. Available from: https://revistafitos.far.fiocruz.br/index.php/revista-fitos/article/view/1392

Da Rocha RRR, Ferreira W de M, Gonçalves KAM. Benefícios proporcionados pelo uso de óleos essenciais sobre o sistema nervoso central e sua atividade antimicrobiana: uma revisão literária / Benefits provided by the use of essential oils on the central nervous system and its antimicrobial activity: a l. Brazilian J Dev [Internet]. 2022 Jan 4;8(1):229–36. Available from: https://brazilianjournals.com/ojs/index.php/BRJD/article/view/42227

Carvalho JJV de, Boaventura FG, Silva A de CR da, Ximenes RL, Rodrigues LKC, Nunes DA de A, et al. Bactérias multirresistentes e seus impactos na saúde pública: Uma responsabilidade social. Res Soc Dev [Internet]. 2021 Jun 10;10(6):e58810616303. Available from: https://rsdjournal.org/index.php/rsd/article/view/16303

Cassel E, Vargas RMF. Experiments and Modeling of the Cymbopogon winterianus Essential Oil Extraction by Steam Distillation Article. Chem Soc. 2006;50(3):126–9.

Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother [Internet]. 2001 May 1;47(5):565–73. Available from: https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/47.5.565

Macchioni F, Perrucci S, Cioni P, Morelli I, Castilho P, Cecchi F. Composition and Acaricidal Activity of Laurus novocanariensis and Laurus nobilis Essential Oils Against Psoroptes cuniculi. J Essent Oil Res [Internet]. 2006 Jan;18(1):111–4. Available from: http://www.tandfonline.com/doi/abs/10.1080/10412905.2006.9699403

Karami P, Zandi M, Ganjloo A. Evaluation of key parameters during ohmic-assisted hydro-distillation of essential oil from aerial part of yarrow (Achillea millefolium L.). J Appl Res Med Aromat Plants [Internet]. 2022 Dec;31(March):100425. Available from: https://doi.org/10.1016/j.jarmap.2022.100425

Silva IGR, Sousa EM, Moraes AAB, Sarges M do SR, Cascaes MM, Nascimento LD, et al. Avaliação sazonal do rendimento e composição química do óleo essencial das folhas de Aniba parviflora (Meisn) Mez. (Lauraceae). Brazilian J Dev [Internet]. 2020;6(6):41334–45. Available from: https://www.brazilianjournals.com/index.php/BRJD/article/view/12329/10333

Emam AM, Mohamed MA, Diab YM, Megally NY. Isolation and structure elucidation of antioxidant compounds from leaves of Laurus nobilis and Emex spinosus. Drug Discov Ther [Internet]. 2010 Jun;4(3):202–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22491184

Porras FD, Flores K, Escobar Muñoz J. Evaluación de la resistencia a los antibióticos de cepas de Escherichia coli aisladas en carne de cerdo comercializada en los mercados municipales de la ciudad de Guatemala. Ciencia, Tecnol y Salud [Internet]. 2022 Nov 30;9(2):182–8. Available from: https://revistas.usac.edu.gt/index.php/cytes/article/view/1058

Noshad M, Alizadeh behbahani B, Rahmati-Joneidabad M. Capparis spinosa ethanolic extract: phenol, flavonoid, antioxidant potential and antibacterial activity on Enterobacter aerogenesis, Escherichia coli, Staphylococcus aureus and Listeria monocytogenes. Food Sci Technol [Internet]. 2022 May 1;19(124):207–16. Available from: https://fsct.modares.ac.ir/article-7-59119-en.html

de Oliveira Carvalho I, Purgato GA, Píccolo MS, Pizziolo VR, Coelho RR, Diaz-Muñoz G, et al. In vitro anticariogenic and antibiofilm activities of toothpastes formulated with essential oils. Arch Oral Biol [Internet]. 2020 Sep;117(March):104834. Available from: https://doi.org/10.1016/j.archoralbio.2020.104834

Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol [Internet]. 2004 Aug;94(3):223–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168160504001680

Nayak S, Nalabothu P, Sandiford S, Bhogadi V, Adogwa A. Evaluation of wound healing activity of Allamanda cathartica. L. and Laurus nobilis. L. extracts on rats. BMC Complement Altern Med [Internet]. 2006 Dec 5;6(1):12. Available from: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-6-12

Anzano A, de Falco B, Grauso L, Motti R, Lanzotti V. Laurel, Laurus nobilis L.: a review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem Rev [Internet]. 2022 Apr 14;21(2):565–615. Available from: https://doi.org/10.1007/s11101-021-09791-z

Al-Abri SS, Said SA, Touby SS Al, Hossain MA, Al-Sabahi JN. Composition analysis and antimicrobial activity of essential oil from leaves of Laurus nobilis grown in Oman. J Bioresour Bioprod [Internet]. 2022 Nov;7(4):328–34. Available from: https://doi.org/10.1016/j.jobab.2022.09.003

Al-Mijalli SH, Mrabti HN, Ouassou H, Flouchi R, Abdallah EM, Sheikh RA, et al. Chemical Composition, Antioxidant, Anti-Diabetic, Anti-Acetylcholinesterase, Anti-Inflammatory, and Antimicrobial Properties of Arbutus unedo L. and Laurus nobilis L. Essential Oils. Life [Internet]. 2022 Nov 14;12(11):1876. Available from: https://www.mdpi.com/2075-1729/12/11/1876

Dadalioǧlu I, Evrendilek GA. Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano ( Origanum minutiflorum ), Bay Laurel ( Laurus nobilis ), Spanish Lavender ( Lavandula stoechas L.), and Fennel ( Foeniculum vulgare ) on Common Foodborne Pathogens. J Agric Food Chem [Internet]. 2004 Dec 1;52(26):8255–60. Available from: https://pubs.acs.org/doi/10.1021/jf049033e

Silva MSP, Brandão DO, Chaves TP, Formiga Filho ALN, Costa EMM de B, Santos VL, et al. Study Bioprospecting of Medicinal Plant Extracts of the Semiarid Northeast: Contribution to the Control of Oral Microorganisms. Evidence-Based Complement Altern Med [Internet]. 2012;2012:1–6. Available from: http://www.hindawi.com/journals/ecam/2012/681207/

Smith-Palmer, Stewart, Fyfe. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol [Internet]. 1998 Feb;26(2):118–22. Available from: https://academic.oup.com/lambio/article/26/2/118/6708195

Published

2025-08-18

How to Cite

Sousa, A. C. S. de ., Sousa Júnior, D. L. de, Barros, J. E. L. de ., Saraiva, C. R. N. ., Silva, R. O. M. da, Leandro, L. M. G. ., & Silva Leandro, M. K. do N. . (2025). Laurus Nobilis L. essential oil potentializes the activity of antibiotics against multirresistant bacteria. Saúde (Santa Maria), 50(1), e83845. https://doi.org/10.5902/2236583483845

Most read articles by the same author(s)