Cinética de extração de óleo de mamona empregando etanol como solvente

Autores

DOI:

https://doi.org/10.5902/2236117062688

Palavras-chave:

Extração sólido-líquido, Modelagem matemática, Biodiesel

Resumo

A sensibilização para questões energéticas e ambientais decorrentes da queima de combustíveis fósseis incentivou a busca por materiais, insumos e fontes renováveis de energias. O biocombustível é uma dessas fontes renováveis e é produzido a partir de óleos vegetais extraídos de matérias primas como a mamona (Ricinus communis). Ela tem sido investigada como matéria-prima devido ao alto teor de óleo na semente, a possibilidade de plantio em regiões com déficit hídrico e à sua elevada produtividade agrícola. Diante da possibilidade de desenvolvimento de um processo simplificado para a produção de biodiesel, como o de transesterificação in situ, que evita a separação prévia do óleo presente na micela, o presente trabalho busca avaliar o comportamento cinético da extração do óleo de mamona empregando etanol como solvente. Nesse contexto, foram obtidos dados experimentais sobre a cinética da extração de óleo de mamona com etanol em diferentes condições de temperatura, bem como, ajustar modelos matemáticos capazes de descrever a cinética do sistema mamona-óleo-etanol. As sementes de mamona empregadas no trabalho foram caracterizadas acerca de sua umidade, teor de óleo e acidez, tendo sido obtido 4,86 %, 43,3 % e 2,1 %, respectivamente. Os experimentos foram realizados em batelada utilizando frascos erlenmeyer selados em banho termostático com agitação recíproca para investigar o processo de extração em diferentes temperaturas (25, 35 e 45 ºC) e razão sólido-líquido 0,08 (g/mL). As extrações percentuais foram quantificadas em tempos de 15, 30, 45, 60, 120, 180, 240, 300, 480, 600 e 1440 min. Para descrição da cinética de extração, foi testado o ajuste de três modelos cinéticos diferentes aos dados experimentais, pseudo-primeira ordem (PFO), pseudo-segunda ordem (PSO) e Patricelli. A partir do cálculo do critério de informação de Akaike corrigido (AICc) o modelo PSO foi o que melhor descreveu a cinética de extração. Deste modo, os resultados obtidos neste trabalho contribuem para ampliação dos conhecimentos acerca do processo de extração de óleo de mamona com etanol como solvente.

Downloads

Não há dados estatísticos.

Biografia do Autor

Suzana Diel Boligon, Federal University of Fronteira Sul, Cerro Largo, RS

Graduanda em Engenharia Ambiental e Sanitária na Universidade Federal da Fronteira Sul campus Cerro Largo- RS,

Ana Carolina Scher, Federal University of Fronteira Sul, Cerro Largo, RS

Graduanda em Engenharia Ambiental e Sanitária na Universidade Federal da Fronteira Sul campus Cerro Largo- RS,

Bruno München Wenzel, Federal University of Fronteira Sul, Cerro Largo, RS

Doutor em Engenharia Química

Referências

ABOELAZAYEM, O.; EL-GENDI, N. S.; ABDEL-REHIM, A. A.; ASHOUR, F.; SADEK, M. A. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy. 2018;157:843-852. Available from: https://doi.org/10.1016/j.energy.2018.05.202

AKAIKE, H. Information theory and the maximum likelihood principle in 2nd International Symposium on Information Theory (B.N. Petrov and F. Cs ä ki, eds.). Akademiai Ki à do, Budapest.1973.

AMARANTE, R. C. A.; OLIVEIRA, P. M.; SCHWANTES, F. K.; MÓRON-VILLARREYES, J. A. Oil Extraction from Castor Cake Using Ethanol: Kinetics and Thermodynamics. Ind. Eng. Chem. Res. 2014;53:6824-6829. Available from: https://doi.org/10.1021/ie500508n

ANDRADE, J. K. S.; SILVA, G. F.; BARRETO, L. C. O.; SANTOS, J. A. B. Estudo da cinética de secagem, extração, caracterização e estabilidade térmica do óleo das sementes de Maracujá do Mato (Passiflora Cincinnata Mast.). Rev. GEINTEC. 2013;3:283-291. Available from: https://doi.org/10.7198/geintec.v3i4.306

AOCS. AOCS Official Method Ac 2-41: Soybeans - Moisture and Volatile Matter. Em: Fats, Oils and Lipid Related Analytical Methods. [s.l.] American Oil Chemists’ Society. 2009.

AOCS. AOCS Official Method Ac 3-44: Soybeans - Oil. Em: Fats, Oils and Lipid Related Analytical Methods. [s.l.] American Oil Chemists’ Society. 2009.

AOCS. AOCS Official Method Ac 5-41: Free Fatty Acids in Soybeans.[s.l.] American Oil Chemists’ Society. 2000.

ATABANI, A. E.; SILITONGA, A. S.; BADRUDDIN, I. A.; MAHLIA, T. M. I.; MASJUKI, H. H.; MEKHILEF, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews. 2012;16(4):2070-2093. Available from: https://doi.org/10.1016/j.rser.2012.01.003

ATTIA, A. M. A.; NOUR, M.; NADA, S. A. Study of Egyptian castor biodiesel-diesel fuel properties and diesel engine performance for a wide range of blending ratios and operating conditions for the sake of the optimal blending ratio. Energy Conversion and Management. 2018;174:364-377. Available from: https://doi.org/10.1016/j.enconman.2018.08.016

BAÜMLER, E. R.; CRAPISTE, G. H.; CARELLI, A. A. Solvent Extraction: Kinetic Study of Major and Minor Compounds. J Am Oil Chem Soc. 2010;87:1489-1495. Available from: https://doi.org/10.1007/s11746-010-1637-3

BELTRÃO, N. E. M. Informações sobre o Biodiesel, em Especial Feito com o Óleo de Mamona. Embrapa Algodão [Internet]. 2003 Aug 24. Available from: https://www.infoteca.cnptia.embrapa.br/handle/doc/273465.

CHAN, C. H.; YUSOFF, R.; NGOH, G. C. Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design. 2014;92:1169-1186. Available from: https://doi.org/10.1016/j.cherd.2013.10.001

CHIDAMBARANATHAN, B.; GOPINATH, S.; ARAVINDRAJ, R.; DEVARAJ, A.; KRISHNAN, S. G.; JEEVAANANTHAN, J. K. S. The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings. 2020. Available from: https://doi.org/10.1016/j.matpr.2020.03.205

COLEMAN, T. F.; LI, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996;6(2),418–445. Available from: https://doi.org/10.1137/0806023

CONEJERO, M. A.; CÉSAR, A. S.; BATISTA, A. P. The organizational arrangement of castor bean family farmers promoted by the Brazilian Biodiesel Program: A competitiveness analysis. Energy Policy. 2017;110:461-470. Available from: https://doi.org/10.1016/j.enpol.2017.08.036

DAS, M.; SARKAR, M.; DATTA, A.; SANTRA, A. K. An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renewable Energy. 2018;119:174-184. Available from: https://doi.org/10.1016/j.renene.2017.12.014

DAGOSTIN, J. L. A.; CARPINÉ, D.; CORAZZA, M. L. 2015. Extraction of soybean oil using ethanol and mixtures with alkyl esters (biodiesel) as co-solvent: Kinetics and thermodynamics. Industrial Crops and Products. 2015;74:69–75. Available from: https://doi.org/10.1016/j.indcrop.2015.04.054

DEMIRBAS, A. Importance of biodiesel as transportation fuel. Energy Policy. 2007;35(9):4661-4670. Available from: https://doi.org/10.1016/j.enpol.2007.04.003

DOMINGUES, L. S. S. Produção de biodiesel de óleo de soja (Glycine max) via transesterificação in situ. [monography]. Bagé: Bacharel em Engenharia de Energia/UNIPAMPA; 2017. 46p.

GARCÍA, M.; BOTELLA, L.; GIL-LALAGUNA, N.; ARAUZO, J.; GONZALO, A.; SÁNCHEZ, J. L. Antioxidants for biodiesel: Additives prepared from extracted fractions of bio-oil. Fuel Processing Technology. 2017;156:407-414. Available from: https://doi.org/10.1016/j.fuproc.2016.10.001

GREEN, D. W.; PERRY, R. H. Perry’s Chemical Engineers’ Handbook. McGraw-Hill Book Company. 2008. 8ed.

HAAS, M. J.; SCOTT, K. M.; FOGLIA, T. A.; MARMER, W. N. The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks. J Am Oil Chem Soc. 2007;84:963–970. Available from: https://doi.org10.1007/s11746-007-1119-4

HINCAPIÉ, G.; MONDRAGON, F.; LÓPEZ, D. P. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel. 2011;90(4):1618–1623. Available from:

https://doi.org/10.1016/j.fuel.2011.01.027

HURVICH, C. M.; TSAI, C. L. Model selection for least absolute deviations regression in small samples. Statistics & Probability Letters. 1990;9(3):259-265. Available from: https://doi.org/10.1016/0167-7152(90)90065-F

INSTITUTO INTERAMERICANO DE COOPERAÇÃO PARA A AGRICULTURA [Internet]. Brasil: Informe sobre a situação e perspectivas da agroenergia e dos biocombustíveis no Brasil. 2007. Available from: http://cmsdespoluir.cnt.org.br/Documents/PDFs/IICA-%20biocombustibles.pdf

KEERA, S. T.; EL SABAGH, M. E.; TAMAN, A. R. Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum. 2018;27(4):979-984. Available from:

https://doi.org/10.1016/j.ejpe.2018.02.007

KNOTHE, G.; KRAHL, J.; GERPEN, J. The Biodiesel Handbook. Champaign - USA: AOCS Press; 1:1-494. 2010.

KUCEK, K. T. Otimização da transesterificação etílica do óleo de soja em meio alcalino [Dissertation]. Curitiba: Mestrado no Programa de Pós-Graduação em Química/UFPR; 2004. 123 p.

MARCHETTI, J. M.; MIGUEL, V. U.; ERRAZU, A. F. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews. 2007;11(6):1300-1311. Available from: https://doi.org/10.1016/j.rser.2005.08.006

MELLER, E.; GREEN, U.; AIZENSHTAT, Z.; SASSON, Y. Catalytic deoxygenation of castor oil over Pd/C for the production of cost effective biofuel. Fuel. 2014;133:89-95. Available from: https://doi.org/10.1016/j.fuel.2014.04.094

MENEZES, M. L.; JOHANN, G.; DIÓRIO, A.; PEREIRA, N. C.; SILVA, E. A. Phenomenological determination of mass transfer parameters of oil extraction from grape biomass waste. Journal of Cleaner Production. 2018;176:130-139. Available from: https://doi.org/10.1016/j.jclepro.2017.12.128

MENKITI, M. C.; AGU, C. M.; UDEIGWE, T. K. Extraction of oil from Terminalia catappa L.: Process parameter impacts, kinetics, and thermodynamics. 2015;77:713-723. Available from: https://doi.org/10.1016/j.indcrop.2015.08.019

MENKITI, M. C.; AGU, C. M.; UDEIGWE, T. K. Kinetic and parametric studies for the extractive synthesis of oil from Terminalia catappa L. kernel. Reac Kinet Mech Cat. 2017;120:129-147. Available from: https://doi.org/10.1007/s11144-016-1101-y

MONTE BLANCO, S. P. D.; SCHEUFELE, F. B.; MÓDENES, A. N.; ESPINOZA-QUIÑONES, F. R.; MARIN, P.; KROUMOV, A. D.; et al. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal. 2017;307:466-475. Available from: https://doi.org/10.1016/j.cej.2016.08.104

PATRICELLI, A.; ASSOGNA, A.; CASALAINA, A.; EMMI, A.; SODINI, G. Fattori che influenzano I’estrazione dei lipidi da semi decorticati di girasole. La Rivista ltaliana Delle Sostanze Grasse. 1979;56:136-142.

PRADANA, Y. S.; HIDAYAT, A.; PRASETYA, A.; BUDIMAN, A. Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst. Energy Procedia. 2017;143:742–747. Available from: https://doi.org/10.1016/j.egypro.2017.12.756.

PEREZ, E. E.; CARELLI, A. A.; CRAPISTE, G. H. Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering. 2011;105(1):180–185. Available from: https://doi.org/10.1016/j.jfoodeng.2011.02.025

POUSA, G. P. A. G.; SANTOS, A. L. F.; SUAREZ, A. Z. History and policy of biodiesel in Brazil. Energy Policy. 2007;35(11):5393–5398. Available from: https://doi.org/10.1016/j.enpol.2007.05.010

ROY, T.; SAHANI, S.; SHARMA, Y. C. Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel. 2020;274. Available from: https://doi.org/10.1016/j.fuel.2020.11764

SANGALETTI-GERHARD, N.; ROMANELLI, T. L.; VIEIRA, T. M. F. S.; NAVIA, R.; D’ARCE, M. A. B. R. Energy flow in the soybean biodiesel production chain using ethanol as solvent extraction of oil from soybeans. Biomass and Bioenergy. 2014;66:39–48. Available from: https://doi.org/10.1016/j.biombioe.2014.04.004

SAWADA, M. M.; LOPES, L.; TODA, T. A.; RODRIGUES, C. E. C. Effects of different alcoholic extraction conditions on soybean oil yield, fatty acid composition and protein solubility of defatted meal. Food Research International. 2014;62:662–670. Available from: https://doi.org/10.1016/j.foodres.2014.04.039

SHAMPINE, L. F.; REICHELT, M. W. The MATLAB ODE Suite. SIAM Journal on Scientific Computing. 1997;18(1):1–22. Available from: https://doi.org/10.1137 / S1064827594276424

TODA, T. A.; SAWADA, M. M.; RODRIGUES, C. E. C. Kinetics of soybean oil extraction using ethanol as solvent: Experimental data and modeling. Food and Bioproducts Processing. 2016;98:1-10. Available from: https://doi.org/10.1016/j.fbp.2015.12.003

TOMAZIN JUNIOR, C. Extração de óleo de soja com etanol e transesterificação etílica na miscela. [dissertation]. Piracicaba: Mestrado no Programa de Pós-Graduação em Ciências/USP; 2008. 72 p.

Publicado

2020-12-04 — Atualizado em 2022-07-28

Versões

Como Citar

Boligon, S. D., Scher, A. C., & Wenzel, B. M. (2022). Cinética de extração de óleo de mamona empregando etanol como solvente. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e16. https://doi.org/10.5902/2236117062688 (Original work published 4º de dezembro de 2020)