Kinetics from castor oil extraction using ethanol as solvent

Autor/innen

DOI:

https://doi.org/10.5902/2236117062688

Schlagworte:

Solid-liquid extraction, Mathematical modeling, Biodiesel

Abstract

The sensitization for energy issues and environmental resulting from burning fossil fuels encourage the search for materials, inputs and renewable sources of energy. The biofuel is one of these renewable sources and is produced from vegetable oils extracted from raw material such as castor (Ricinus communis). It has been investigated as a raw material due to the high oil content in the seed, the possibility of plantations in regions with water deficit and high agricultural productivity. In front of the possibility of developing a simplified process for the production of biodiesel, such as in situ transesterification, which avoids the previous separation of the oil existing in the micelle, the present work aims to evaluate the kinetic behavior of extraction from castor oil using ethanol as solvent. In this context, experimental data were obtained about the kinetic from castor oil using ethanol in several conditions of temperature, as well as, fitting mathematical models able to describe the kinetic of the system castor-oil-ethanol. The castor seed used in the work were characterized about its humidity, oil content and acidity, having been obtained 4.86 %, 43.3 % and 2.1 %, respectively. The experiments were carried out in batch using sealed Erlenmeyer flasks in a thermostatic bath with reciprocal agitation to investigate the extraction process at different temperatures (25, 35 and 45 ºC) and solid-liquid ratio equal to 0.08 (g/ml). The percentage extractions were quantified in times of 15, 30, 45, 60, 120, 180, 240, 300, 480, 600 and 1440 min. For description of kinetics extraction, the fit of three different kinetic models to the experimental data was tested, pseudo-first order (PFO), pseudo-second order (PSO) and Patricelli. From the calculation of the corrected Akaike information criterion (AICc), the PSO model was the one that best described the extraction kinetics. In this way, the results obtained in this work contribute to expand the knowledge about the extraction process of castor oil with ethanol as solvent.

Downloads

Keine Nutzungsdaten vorhanden.

Autor/innen-Biografien

Suzana Diel Boligon, Federal University of Fronteira Sul, Cerro Largo, RS

Graduanda em Engenharia Ambiental e Sanitária na Universidade Federal da Fronteira Sul campus Cerro Largo- RS,

Ana Carolina Scher, Federal University of Fronteira Sul, Cerro Largo, RS

Graduanda em Engenharia Ambiental e Sanitária na Universidade Federal da Fronteira Sul campus Cerro Largo- RS,

Bruno München Wenzel, Federal University of Fronteira Sul, Cerro Largo, RS

Doutor em Engenharia Química

Literaturhinweise

ABOELAZAYEM, O.; EL-GENDI, N. S.; ABDEL-REHIM, A. A.; ASHOUR, F.; SADEK, M. A. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy. 2018;157:843-852. Available from: https://doi.org/10.1016/j.energy.2018.05.202

AKAIKE, H. Information theory and the maximum likelihood principle in 2nd International Symposium on Information Theory (B.N. Petrov and F. Cs ä ki, eds.). Akademiai Ki à do, Budapest.1973.

AMARANTE, R. C. A.; OLIVEIRA, P. M.; SCHWANTES, F. K.; MÓRON-VILLARREYES, J. A. Oil Extraction from Castor Cake Using Ethanol: Kinetics and Thermodynamics. Ind. Eng. Chem. Res. 2014;53:6824-6829. Available from: https://doi.org/10.1021/ie500508n

ANDRADE, J. K. S.; SILVA, G. F.; BARRETO, L. C. O.; SANTOS, J. A. B. Estudo da cinética de secagem, extração, caracterização e estabilidade térmica do óleo das sementes de Maracujá do Mato (Passiflora Cincinnata Mast.). Rev. GEINTEC. 2013;3:283-291. Available from: https://doi.org/10.7198/geintec.v3i4.306

AOCS. AOCS Official Method Ac 2-41: Soybeans - Moisture and Volatile Matter. Em: Fats, Oils and Lipid Related Analytical Methods. [s.l.] American Oil Chemists’ Society. 2009.

AOCS. AOCS Official Method Ac 3-44: Soybeans - Oil. Em: Fats, Oils and Lipid Related Analytical Methods. [s.l.] American Oil Chemists’ Society. 2009.

AOCS. AOCS Official Method Ac 5-41: Free Fatty Acids in Soybeans.[s.l.] American Oil Chemists’ Society. 2000.

ATABANI, A. E.; SILITONGA, A. S.; BADRUDDIN, I. A.; MAHLIA, T. M. I.; MASJUKI, H. H.; MEKHILEF, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews. 2012;16(4):2070-2093. Available from: https://doi.org/10.1016/j.rser.2012.01.003

ATTIA, A. M. A.; NOUR, M.; NADA, S. A. Study of Egyptian castor biodiesel-diesel fuel properties and diesel engine performance for a wide range of blending ratios and operating conditions for the sake of the optimal blending ratio. Energy Conversion and Management. 2018;174:364-377. Available from: https://doi.org/10.1016/j.enconman.2018.08.016

BAÜMLER, E. R.; CRAPISTE, G. H.; CARELLI, A. A. Solvent Extraction: Kinetic Study of Major and Minor Compounds. J Am Oil Chem Soc. 2010;87:1489-1495. Available from: https://doi.org/10.1007/s11746-010-1637-3

BELTRÃO, N. E. M. Informações sobre o Biodiesel, em Especial Feito com o Óleo de Mamona. Embrapa Algodão [Internet]. 2003 Aug 24. Available from: https://www.infoteca.cnptia.embrapa.br/handle/doc/273465.

CHAN, C. H.; YUSOFF, R.; NGOH, G. C. Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design. 2014;92:1169-1186. Available from: https://doi.org/10.1016/j.cherd.2013.10.001

CHIDAMBARANATHAN, B.; GOPINATH, S.; ARAVINDRAJ, R.; DEVARAJ, A.; KRISHNAN, S. G.; JEEVAANANTHAN, J. K. S. The production of biodiesel from castor oil as a potential feedstock and its usage in compression ignition Engine: A comprehensive review. Materials Today: Proceedings. 2020. Available from: https://doi.org/10.1016/j.matpr.2020.03.205

COLEMAN, T. F.; LI, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996;6(2),418–445. Available from: https://doi.org/10.1137/0806023

CONEJERO, M. A.; CÉSAR, A. S.; BATISTA, A. P. The organizational arrangement of castor bean family farmers promoted by the Brazilian Biodiesel Program: A competitiveness analysis. Energy Policy. 2017;110:461-470. Available from: https://doi.org/10.1016/j.enpol.2017.08.036

DAS, M.; SARKAR, M.; DATTA, A.; SANTRA, A. K. An experimental study on the combustion, performance and emission characteristics of a diesel engine fuelled with diesel-castor oil biodiesel blends. Renewable Energy. 2018;119:174-184. Available from: https://doi.org/10.1016/j.renene.2017.12.014

DAGOSTIN, J. L. A.; CARPINÉ, D.; CORAZZA, M. L. 2015. Extraction of soybean oil using ethanol and mixtures with alkyl esters (biodiesel) as co-solvent: Kinetics and thermodynamics. Industrial Crops and Products. 2015;74:69–75. Available from: https://doi.org/10.1016/j.indcrop.2015.04.054

DEMIRBAS, A. Importance of biodiesel as transportation fuel. Energy Policy. 2007;35(9):4661-4670. Available from: https://doi.org/10.1016/j.enpol.2007.04.003

DOMINGUES, L. S. S. Produção de biodiesel de óleo de soja (Glycine max) via transesterificação in situ. [monography]. Bagé: Bacharel em Engenharia de Energia/UNIPAMPA; 2017. 46p.

GARCÍA, M.; BOTELLA, L.; GIL-LALAGUNA, N.; ARAUZO, J.; GONZALO, A.; SÁNCHEZ, J. L. Antioxidants for biodiesel: Additives prepared from extracted fractions of bio-oil. Fuel Processing Technology. 2017;156:407-414. Available from: https://doi.org/10.1016/j.fuproc.2016.10.001

GREEN, D. W.; PERRY, R. H. Perry’s Chemical Engineers’ Handbook. McGraw-Hill Book Company. 2008. 8ed.

HAAS, M. J.; SCOTT, K. M.; FOGLIA, T. A.; MARMER, W. N. The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks. J Am Oil Chem Soc. 2007;84:963–970. Available from: https://doi.org10.1007/s11746-007-1119-4

HINCAPIÉ, G.; MONDRAGON, F.; LÓPEZ, D. P. Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel. 2011;90(4):1618–1623. Available from:

https://doi.org/10.1016/j.fuel.2011.01.027

HURVICH, C. M.; TSAI, C. L. Model selection for least absolute deviations regression in small samples. Statistics & Probability Letters. 1990;9(3):259-265. Available from: https://doi.org/10.1016/0167-7152(90)90065-F

INSTITUTO INTERAMERICANO DE COOPERAÇÃO PARA A AGRICULTURA [Internet]. Brasil: Informe sobre a situação e perspectivas da agroenergia e dos biocombustíveis no Brasil. 2007. Available from: http://cmsdespoluir.cnt.org.br/Documents/PDFs/IICA-%20biocombustibles.pdf

KEERA, S. T.; EL SABAGH, M. E.; TAMAN, A. R. Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum. 2018;27(4):979-984. Available from:

https://doi.org/10.1016/j.ejpe.2018.02.007

KNOTHE, G.; KRAHL, J.; GERPEN, J. The Biodiesel Handbook. Champaign - USA: AOCS Press; 1:1-494. 2010.

KUCEK, K. T. Otimização da transesterificação etílica do óleo de soja em meio alcalino [Dissertation]. Curitiba: Mestrado no Programa de Pós-Graduação em Química/UFPR; 2004. 123 p.

MARCHETTI, J. M.; MIGUEL, V. U.; ERRAZU, A. F. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews. 2007;11(6):1300-1311. Available from: https://doi.org/10.1016/j.rser.2005.08.006

MELLER, E.; GREEN, U.; AIZENSHTAT, Z.; SASSON, Y. Catalytic deoxygenation of castor oil over Pd/C for the production of cost effective biofuel. Fuel. 2014;133:89-95. Available from: https://doi.org/10.1016/j.fuel.2014.04.094

MENEZES, M. L.; JOHANN, G.; DIÓRIO, A.; PEREIRA, N. C.; SILVA, E. A. Phenomenological determination of mass transfer parameters of oil extraction from grape biomass waste. Journal of Cleaner Production. 2018;176:130-139. Available from: https://doi.org/10.1016/j.jclepro.2017.12.128

MENKITI, M. C.; AGU, C. M.; UDEIGWE, T. K. Extraction of oil from Terminalia catappa L.: Process parameter impacts, kinetics, and thermodynamics. 2015;77:713-723. Available from: https://doi.org/10.1016/j.indcrop.2015.08.019

MENKITI, M. C.; AGU, C. M.; UDEIGWE, T. K. Kinetic and parametric studies for the extractive synthesis of oil from Terminalia catappa L. kernel. Reac Kinet Mech Cat. 2017;120:129-147. Available from: https://doi.org/10.1007/s11144-016-1101-y

MONTE BLANCO, S. P. D.; SCHEUFELE, F. B.; MÓDENES, A. N.; ESPINOZA-QUIÑONES, F. R.; MARIN, P.; KROUMOV, A. D.; et al. Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chemical Engineering Journal. 2017;307:466-475. Available from: https://doi.org/10.1016/j.cej.2016.08.104

PATRICELLI, A.; ASSOGNA, A.; CASALAINA, A.; EMMI, A.; SODINI, G. Fattori che influenzano I’estrazione dei lipidi da semi decorticati di girasole. La Rivista ltaliana Delle Sostanze Grasse. 1979;56:136-142.

PRADANA, Y. S.; HIDAYAT, A.; PRASETYA, A.; BUDIMAN, A. Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst. Energy Procedia. 2017;143:742–747. Available from: https://doi.org/10.1016/j.egypro.2017.12.756.

PEREZ, E. E.; CARELLI, A. A.; CRAPISTE, G. H. Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. Journal of Food Engineering. 2011;105(1):180–185. Available from: https://doi.org/10.1016/j.jfoodeng.2011.02.025

POUSA, G. P. A. G.; SANTOS, A. L. F.; SUAREZ, A. Z. History and policy of biodiesel in Brazil. Energy Policy. 2007;35(11):5393–5398. Available from: https://doi.org/10.1016/j.enpol.2007.05.010

ROY, T.; SAHANI, S.; SHARMA, Y. C. Green synthesis of biodiesel from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel. 2020;274. Available from: https://doi.org/10.1016/j.fuel.2020.11764

SANGALETTI-GERHARD, N.; ROMANELLI, T. L.; VIEIRA, T. M. F. S.; NAVIA, R.; D’ARCE, M. A. B. R. Energy flow in the soybean biodiesel production chain using ethanol as solvent extraction of oil from soybeans. Biomass and Bioenergy. 2014;66:39–48. Available from: https://doi.org/10.1016/j.biombioe.2014.04.004

SAWADA, M. M.; LOPES, L.; TODA, T. A.; RODRIGUES, C. E. C. Effects of different alcoholic extraction conditions on soybean oil yield, fatty acid composition and protein solubility of defatted meal. Food Research International. 2014;62:662–670. Available from: https://doi.org/10.1016/j.foodres.2014.04.039

SHAMPINE, L. F.; REICHELT, M. W. The MATLAB ODE Suite. SIAM Journal on Scientific Computing. 1997;18(1):1–22. Available from: https://doi.org/10.1137 / S1064827594276424

TODA, T. A.; SAWADA, M. M.; RODRIGUES, C. E. C. Kinetics of soybean oil extraction using ethanol as solvent: Experimental data and modeling. Food and Bioproducts Processing. 2016;98:1-10. Available from: https://doi.org/10.1016/j.fbp.2015.12.003

TOMAZIN JUNIOR, C. Extração de óleo de soja com etanol e transesterificação etílica na miscela. [dissertation]. Piracicaba: Mestrado no Programa de Pós-Graduação em Ciências/USP; 2008. 72 p.

Veröffentlicht

2020-12-04 — aktualisiert am 2022-07-28

Versionen

Zitationsvorschlag

Boligon, S. D., Scher, A. C., & Wenzel, B. M. (2022). Kinetics from castor oil extraction using ethanol as solvent. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e16. https://doi.org/10.5902/2236117062688 (Original work published 4. Dezember 2020)

Am häufigsten gelesenen Artikel dieser/dieses Autor/in