Analysis of residual sludge stored in UASB of a WWT in Petrolina-PE-Brazil

Auteurs-es

DOI :

https://doi.org/10.5902/2236117040564

Mots-clés :

Anaerobic digestion, Reactor, UASB, Organic matter, Archaea, Methagenomic

Résumé

Anaerobic digestion is a process that occurs through microorganisms in an anoxic condition and aims to digest organic matter resulting mainly in biogas. This process is common in wastewater treatment WWTs (Waste Water Treatment), which usually occur in bioreactors. In Brazil the most widespread is the UASB (Upflow Anaerobic Sludge Blanket) reactor due to its temperature conditions, which found in the country an ideal parameter. Archeas make up the microbiota responsible for digestion acting in the final stage of methanogenesis. The studies of these organisms are mainly through metagenomics, because laboratory cultivation is difficult. Therefore, the research aimed to study the physical and molecular parameters of the sludge. Four UASB reactors from WWT Center in Petrolina – Pernambuco- Brazil were evaluated. For the DNA extraction process the adapted protocol was applied, the physical analysis of the solids obeyed the determinations of APHA (2005). DNA extraction was achieved with the modified protocol and demonstrated a high concentration of DNA present in the samples, being the 4 most abundant reactor. Physical quantifications of the solids analysis showed that the values found are in compliance with current standards.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Erick de Aquino Santos, Universidade Federal do Vale do São Francisco, Petrolina, PE

Bacharel em Ciências Biológicas pela Universidade Federal do Vale do São Francisco (UNIVASF), onde atuou no Laboratório de Genética e Biotecnologia através do GEIS-Grupo de Pesquisas Integradas do Semiárido, desenvolvendo trabalhos com ênfase em extração e quantificação de DNA e PCR convencional

Keyla Vitória Marques Xavier, Universidade Federal do Vale do São Francisco, Petrolina, PE

Mestranda do curso de Pós Graduação em Genética

Marcella Vianna Cabral Paiva, Companhia Pernambucana de Saneamento, Recife, PE

Doutorado em Engenharia Civil- área de concentração tecnologia ambiental e recursos hídricos, concluído em 2019

Miriam Cleide Cavalcante de Amorim, Universidade Federal do Vale do São Francisco, Petrolina, PE

Colegiado de Engenharia Agrícola e Ambiental.

Michely Correia Diniz, Universidade Federal do Vale do São Francisco, Petrolina, PE

Colegiado de Ciências Biológicas

Références

ANDERSON, K.; SALLIS, P.; UYANIK, S. Anaerobic treatment processes. Handbook of water and wastewater microbiology, p. 391-426, 2003.

APHA. Standard methods for the examination of water and wastewater. American public health association, Washington, D.C. 2005.

APPELS, L. et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, v. 34, p. 755-781. 2008.

ARAÚJO, A. P. C. et al. Produção de biogás a partir de resíduos orgânicos utilizando biodigestor anaeróbico. 2017.

BAUER. C.; KORTHALS, M.; GRONAUER, A.; LEBUHN, M. Methanogens in biogas production from renewable resources – a novel molecular population analysis approach. Water Sci. Tech., 58, No. 7, S. 1433 -1439, 2008.

BELLI FILHO, P. et al. Tecnologias para o tratamento de dejetos de suínos. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 5, n. 1, p. 166-170, 2001.

BERNADINO, U. B.; GOMES, I. H. Estudo comparativo da

produção de lodo das estações de tratamento de esgoto de mulembá e vale encantado e avaliação dos custos com sua disposição. 2013.74 f. Monografia (Bacharel em Engenharia Ambiental) - Faculdades Integradas Espírito Santenses, Vitória, 2013.

BIANCO, C. I. Caracterização da comunidade procarionte presente no tratamento anaeróbio da fração orgânica dos resíduos sólidos urbanos em conjunto com serragem e lodo de esgoto. 2015. Tese de Doutorado. Universidade de São Paulo.

BLAGODATSKAYA, E. V.; BLAGODATSKII, S. A.; ANDERSON, T. H. Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems. Microbiology, v.72, n.6, p.744-749, 2003.

BRASIL. Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente. RESOLUÇÃO nº 357, de 17 de março de 2005. Brasília, 2005.

CAMPOS. J. R. Tratamento de esgotos sanitarios por processos anaerobicos e disposição controlada do solo. 1ª ed. Rio de Janeiro: ABES, 1999.

CERRILLO, M. et al. Assessment of active methanogenic archaea in a methanol-fed upflow anaerobic sludge blanket reactor. Applied microbiology and biotechnology, v. 100, n. 23, p. 10137-10146, 2016.

CHERNICHARO, C. A. L. Reatores anaeróbios, Belo Horizonte, Departamento de Engenharia Sanitária e Ambiental – UFMG, v. 5, 2 ed, p. 31-32, 2007.

CONRAD, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, v. 28, n. 3, p. 193-202, 1999.

CRAVEIRO, A. M. Produção de biogás. IPT, 1982.

DELONG, E. F. Everything in moderation: archaea as 'non-extremophiles'. Current Opinion in Genetetic & Development, v. 8, n. 6 p. 649-654, 1998.

DEMEYER, D.; FIEVEZ, V. Ruminants and environment: methanogenesis [greenhouse gas]. In: Annales de Zootechnie (France). 2000.

DE VRIEZE, Jo et al. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water research, v. 111, p. 109-117, 2017.

EME, L. ; DOOLITTLE, W. Ford. Archaea. Current Biology, v. 25, n. 19, p. R851-R855, 2015.

FORTERRE, P.; BROCHIER, C.; PHILIPPE, H. Evolution of the Archaea. Theoretical population biology, v. 61, n. 4, p. 409-422, 2002.

FOX, G. E. et al. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci., v. 74, n. 10, p. 4537-4541, out. 1977.

GARCIA, A. F. Análises filogenéticas no gênero Anacardium. 2009. Tese de Doutorado. Universidade de São Paulo.

GRANZOTTO, F.; SCHERER, M. J.; BRACHER, E. H. Treatment of urban residential organic waste through anaerobic digestion. Scientia cum Industria, v. 4, n. 2, p. 131-134, 2016.

GRIBALDO, S.; BROCHIER-ARMANET, C. The origin and evolution of Archaea: a state of the art. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 361, n. 1470, p. 1007-1022, 2006.

GOMAA, M. A.; ABED, R. M. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel. Journal of biotechnology, v. 253, p. 14-22, 2017.

HAANDEL, A. C. V.; KATO, M. T.; CATUNDA, P. F. C.; KLORENCIO L. Anaerobic Reactor Design Concepts for the Treatment of Domestic Wastewater. Reviews in Enviromental Science and Bio/Technology, Londres, v. 1, n.5, p. 21-38, feb, 2006.

HEAD, I. M.; SAUNDERS, J. R.; PICKUP, R. W. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial ecology, v. 35, n. 1, p. 1-21, 1998.

IBGE, Instituto Brasileiro de Geografia e Estatística [internet]. Disponível em:< https://cidades.ibge.gov.br/brasil/pe/petrolina/panorama>. Acesso em: 20 de agosto de 2019.

KAVIYARASAN, K. Application of UASB reactor in industrial wastewater treatment-A Review. International Journal of Scientific & Engineering Research, 5(1): 584. 2014.

KONG, X. et al. Effect of Fe0 addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Management, v. 71, p. 719-727, 2018.

KORSAK, L. Anaerobic treatment of wastewater in a UASB reactor. 2008. 70 f. Licentiate Thesis. Royal Institute of Technology. Stockholm, Sweden. 2008.

LEW, B.; BELAVSKI, M.; ADMON, S.; TARRE, S.; GREEN, M. Temperature effect on UASB reactor operation for domestic wastewater treatment in temperate climate regions. Water Science and Technology, v. 48, n. 3, p. 25-30. 2003.

LIMA, A. B. B. V. Pós-Tratamento de efluente de reator anaeróbio em sistema sequencial constituído de ozonização em processo biológico aeróbio. Dissertação de Mestrado. 99 f. Universidade de São Paulo. São Carlos. 2006.

LIU, Y.; WHITMAN, W. B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann. N.Y. Acad. Sci., v. 1125, p. 171-189, mar, 2008.

LUCENA, R.M. Identificação Molecular da diversidade microbiana em reator UASb de estação de tratamento de esgoto. Dissertação de Mestrado. Universidade Federal de Pernambuco. 2009.

MATOS, A.T.; PINTO, A.B.; BORGES,J.D. Caracterização das águas residuárias da lavagem e despolpa de frutos do cafeeiro e possibilidades de seu uso na fertirrigação. In: III Seminário internacional sobre biotecnologia na agroindústria cafeeira, 1999. Londrina-PR. Anais.Londrina: UFPR, IAPAR, IRD, 1999.P.395-396.

MES, T .Z. D.; STAMS, A. J. M.; ZEEMAN, G.Methane production by anaerobic digestion of wastewater and solid wastes. In: REITH, J. H.; WIJFFELS, R. H.; BARTEN, H. (Eds). Biomethane and Biohydrogen. Status and perspectives of biological methane and hydrogen production. Netherlands Agency for Energy and the Environment. Netherlands. 2003.

ÖZCAN, O. Archaeal Diversity and Their Biotechnological Potential. In: CALISKAN, M. Genetic Diversity in Microorganisms. InTech. 2012.

REIS, A. S. Tratamento de resíduos sólidos orgânicos em biodigestor anaeróbio. Universidade Federal de Pernambuco, Caruaru, 2012.

SHAH, F. A.; MAHMOOD, Q.; SHAH, M. M.; PERVEZ, A.; ASAD, S. A. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. The Scientific World Journal, v. 2014, p. 1-21. 2014.

TONETTI, A. L. et al. Tratamento de esgotos domésticos em comunidades isoladas: referencial para a escolha de soluções. Campinas, SP. Biblioteca/Unicamp, 2018.

VON SPERLING, M. Princípios básicos do tratamento de esgotos. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental. Universidade Federal de Minas Gerais, 2, 1996, 211p.

XAVIER, K. V. M. Lodo residual: uma abordagem molecular e evolutiva. 2018. IX, 69 f. Trabalho de Conclusão de Curso (Graduação em Ciências Biológicas) - Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, 2018.

WEILAND, P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol, v. 85, p. 849-860. 2010.

WOESE, C. R.; FOX, G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci., v. 74, n. 11, p. 5088-5090, nov. 1977.

WOESE, C. R.; KANDLER, O.; WHEELIS, M. L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eukarya. Proc. Natl. Acad. Sci., v. 87, n. 12, p. 4576-4579, jun. 1990.

YARZA, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, v. 12, n. 9, p. 635, 2014.

Publié-e

2020-01-08 — Mis(e) à jour 2022-08-01

Versions

Comment citer

Santos, E. de A., Xavier, K. V. M., Paiva, M. V. C., Amorim, M. C. C. de, & Diniz, M. C. (2022). Analysis of residual sludge stored in UASB of a WWT in Petrolina-PE-Brazil. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e10. https://doi.org/10.5902/2236117040564 (Original work published 8 janvier 2020)

Numéro

Rubrique

ENVIRONMENTAL THECNOLOGY

Articles les plus lus du,de la,des même-s auteur-e-s