Ranqueamento de sistemas de produtos baseado na avaliação da sustentabilidade do ciclo de vida: tomada de decisão estocástica baseada em múltiplos critérios

Autores

  • Breno Barros Telles do Carmo Universidade Federal Rural do Semi-Árido Departamento de Engenharias e Ciências Ambientais http://orcid.org/0000-0002-7506-7037
  • Manuele Margni École Polytechnique de Montréal
  • Pierre Baptiste École Polytechnique de Montréal

DOI:

https://doi.org/10.5902/1983465955294

Palavras-chave:

Life cycle sustainability assessment, Multiple criteria decision analysis, Uncertainty, Decision-making.

Resumo

Propósito – A avaliação de sustentabilidade do ciclo de vida (LCSA) fornece informações úteis e abrangentes sobre o desempenho de um sistema de produtos. Entretanto, existem alguns desafios associado ao processo de tomada de decisão envolvendo esses resultados: (i) indicadores multidimensionais, (ii) objetivos conflitantes e (iii) incerteza associada à avaliação de desempenho. Esta pesquisa propõe uma abordagem que considera a incerteza do desempenho em termos de sustentabilidade do ciclo de vida através do processo de análise de decisão baseado em múltiplos critérios (MCDA) para apoiar a tomada de decisão.

Metodologia – Nosso método está estruturado em três fases: i) avaliação da incerteza do desempenho obtido por meio da LCSA, ii) propagação da incerteza da LCSA nos métodos MCDA e iii) interpretação dos resultados estocásticos. A abordagem foi aplicada em um estudo de caso ilustrativo, classificando quatro alternativas de fornecimento de biodiesel.

Resultados –  A recomendação gerada por esta abordagem fornece uma informação sobre a confiança que o tomador de decisão pode ter em um determinado resultado (classificação de soluções) sob a forma de uma probabilidade, proporcionando um melhor conhecimento do risco (neste caso devido à incerteza da solução preferida). Assim, os resultados estocásticos, se interpretados de forma adequada, fornecem uma medida da robustez dos rankings gerados pelos métodos MCDA, superando a limitação do excesso de confiança dos rankings determinísticos.

Originalidade – As contribuições fundamentais deste artigo são (i) integrar a incerteza da LCSA nos processos de tomada de decisão por meio da abordagem MCDA; (ii) fornecer uma análise de sensibilidade sobre a escolha do método MCDA, (iii) apoiar as escolhas de preferência dos tomadores de decisão por meio de um processo de elicitação transparente e (iv) fornecer uma plataforma de tomada de decisão prática que contabiliza simultaneamente os desempenhos das performances LCSA incertas com julgamentos de valor das partes interessadas.

Downloads

Não há dados estatísticos.

Referências

Amiri M, Nosratian N E, Jamshidi A and Kazemi A (2008) Developing a new electre method with interval data in multiple attribute decision making problems. J. Appl. Sci. 22: 4017-4028.

Balali V, Zahraie B and Roozbahni A (2014) Integration of Electre III and Promethee II decision-making methods with an interval approach: application in selection of appropriate structural systems. J. Comput. Civil Eng. 28(2): 297-314. doi: 10.1061/(ASCE)CP.1943-5487.0000254

Bachmann T M (2013) Towards life cycle sustainability assessment: drawing on NEEDS project’s total cost and multi-criteria decision analysis ranking methods. Int. J. Life Cycle Assess.18: 1698-1709. doi: 10.1007/s11367-012-0535-3

Bengtson M (2001) Weighting in practice. J. Ind. Ecol. Ecology. 4(4): 47-60. doi: 10.1162/10881980052541945

Brans J-P and Mareschal B (2005) Promethee methods. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 133-161.

Carmo BBT, Margni M, Baptiste P (2017) Addressing uncertain scoring and weighting factors in social life cycle assessment. Int J Life Cycle Assess. doi:10.1007/s11367-017-1275

Carmo BBT, Margni M, Baptiste P (2017) Customized scoring and weighting approaches for quantifying and aggregating results in social life cycle impact assessment. Int J Life Cycle Assess. doi: 10.1007/s11367-017-1280-4

Chai J, Liu J N K, Ngai E W T (2013) Application of decision-making techniques in supplier selection: a systematic review of literature. Expert Syst. Appl. 40: 3872-3885. doi: 10.1016/j.eswa.2012.12.040

Clavreul J, Guyonnet D, Tonini D and Christensen T H (2013) Stochastic and epistemic uncertainty propagation in LCA. Int. J. Life Cycle Assess. 18:1393-1403. doi: 10.1007/s11367-013-0572-6.

Cucurachi S, Seager T P, Prado V (2017) Normalization in comparative life cycle assessment to support environmental decision making. J. Ind. Ecol. Doi: 10.1111/jiec.12549

Edwards W and Barron F H (1994) SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes. 60 (3): 306-325. doi: 10.1006/obhd.1994.1087

Fagnen, S, Ménard J F, Brodeur C, Beaudoin D, Lamarche V, Réveret J P (2010) Analyse environnementale et socio-économique de l’utilisation de biodiesel en remplacement des produits pétroliers dans les autobus de la STM. Rapport d’analyse préliminaire CIRAIG, Montréal.

Finkbeiner M, Schau E M, Lehmann A and Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2:3309-3322. doi: 10.3390/su2103309

Goumas M and Lygerou V (2000) An extension of the Promethee method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 123:606-613. Doi: 10.1016/S0377-2217(99)00093-4

Guitouni A and Martel J-M (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109:501-521. doi: 10.1016/S0377-2217(98)00073-3

Halog A and Manik Y (2011) Advancing integrated systems modeling framework for life cycle sustainability assessment. Sustainability 3: 469-499. Doi: 10.3390/su3020469

Hanandeh A E and El-Zein (2010) The development and application of multi-criteria decision-making tool with consideration of uncertainty: The selection of a management strategy for the bio-degradable fraction in the municipal solid waste. Bioresour. Technol. 101: 555-561. doi: 10.1016/j.biortech.2009.08.048

Heijungs R, Huppes G and Guinée J B (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym. Degrad. Stab. 95: 422-428. doi: 10.1016/j.polymdegradstab.2009.11.010

Henriksson PJG, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB (2015) Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS ONE 10(3): e0121221. doi:10.1371/journal.pone.0121221

Hyde K, Maier H R and Colby C (2003) Incorporating uncertainty in Promethee MCDA method. J. Multi-Crit.Decis. Anal. 12:245-259. doi: 10.1002/mcda.361

Jolliet, O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G and Rosenbaum R (2003). IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess 8(6): 324-330. doi: 10.1007/BF02978505

Kalbar, P.P., Birkved, M., Nygaard, S.E. and Hauschild, M (2017). Weighting and Aggregation in Life Cycle Assessment: Do Present Aggregated Single Scores Provide Correct Decision Support?. Journal of Industrial Ecology, 21(6), pp.1591-1600.

Keller H, Rettenmaier N, Reinhardt G A (2015) Integrated life cycle sustainability assessment - a practical approach. Appl. Energy 154:1072-1081. doi: 10.1016/j.apenergy.2015.01.095

Klöpffer W and Ciroth A (2011) Is LCC relevant in a sustainable assessment? Int. J. Life Cycle Assess. 16: 99-101. doi: 10.1007/s11367-011-0249-y

Laurin L, Amor B, Bachmann T M, Bare J, Koffler C, Genest S, Preiss P, Pierce J, Satterfield B and Vigon B (2016) Life cycle assessment capacity roadmap (section 1): decision-making support using LCA. Int. J. Life Cycle Assess.21: 443-447. doi: 10.1007/s11367-016-1031-y

Le Téno J F and Mareschal B (1998) An interval version of Promethee for the comparison of building products’ design with ill-defined data on environmental quality. Eur. J. Oper. Res. 109: 522-529. doi: 10.1016/S0377-2217(98)00074-5

Prado-Lopez, V., Seager, T.P., Chester, M. et al. Int J Life Cycle Assess (2014) 19: 405. https://doi.org/10.1007/s11367-013-0641-x

Prado‐Lopez, V. , Wender, B. A., Seager, T. P., Laurin, L. , Chester, M. and Arslan, E. (2016), Tradeoff Evaluation Improves Comparative Life Cycle Assessment: A Photovoltaic Case Study. Journal of Industrial Ecology, 20: 710-718. doi:10.1111/jiec.12292

Lora E E S, Palacio J C E, Rocha M H, Reno M L G, Venturini O J and Olmo O A (2011) Issues to consider, existing tools and constraints in biofuels sustainability assessments. Energy. 36:2097-2110. Doi: 10.1016/j.energy.2010.06.012

Marinoni O (2005) A stochastic special decision support system based on Promethee. International Journal of Geographical Information Science, 19(1): 51-68. doi: 10.1080/13658810412331280176

Martín-Gamboa M, Iribarren D, García-Gusano, D and Dufour J (2017) A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Cleaner Prod. 164-174. doi: 10.1016/j.jclepro.2017.03.017

Mousseau V (2003) Elicitation des préférences pour l’aide multicritère à la decision. Mémoire. Université Paris Dauphine.

Myllyviita T, Holma A, Antikainen R, Lähtinen K and Leskinen P (2012) Assessing environmental impacts of biomass production chains – application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). J. Cleaner Prod. 238-245. doi: 10.1016/j.jclepro.2012.01.019

Nie R, Tian Z, Wang J, Zhang H, Wang T (2018) Water security sustainability evaluation: Applying a multistage decision support framework in industrial region, J. Cleaner Prod. 196: 1681-1704. doi: 10.1016/j.jclepro.2018.06.144.

Onat N C, Kucukvar M, Tatari O and Zheng Q P (2016) Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternarive passage cars in U. S. J. Cleaner Prod. 291-307. doi: 10.1016/j.jclepro.2015.09.021

Pope J, Annandale D and Morisson-Saunders A (2004) Conceptualising sustainability assessment. Environmental Impact Assessment Review. 24: 595-616. doi: 10.1016/j.eiar.2004.03.001

Qiao, D., Shen, K., Wang, J. et al. J Ambient Intell Human Comput (2019). https://doi.org/10.1007/s12652-019-01251-z

Qureshi M N, Kumar D and Kumar P (2007) Selection of potential 3PL services providers using Topsis with interval data. IEEE International Conference on Industrial Engineering and Engineering Management 1512-1516. doi: 10.1109/IEEM.2007.4419445

Roberts R and Goodwin P (2002) Weight approximations in multi-attribute decision models. J. Multi-Crit. Decis. Anal. 11: 291-303. Doi: 10.1002/mcda.320.

Rowley, H. V., G. M. Peters, S. Lundie, and S. J. Moore. 2012. Aggregating sustainability indicators: Beyond the weighted sum. Journal of Environmental Management 111: 24–33.

Roy B (2005) Paradigms and Challenges. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 4-24.

Saaty T L (2005) The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 344-407.

Sanchez-Ramirez PK, Petti L, Haberland NT, Ugaya CML (2014) Subcategory assessment method for social life cycle assessment. Part 1: methodological framework. Int J Life Cycle Assess 19: 1515–1523

Sayydi M and Makui A (2012) A new view to uncertainty in Electre III method by introducing interval numbers. Decision Science Letters 1:33-38. Doi: 10.5267/j.dsl.2012.06.002

Shärlig A (1985) Décider sur plusieurs critères: panorama de l'aide à la décision multicritère. Presses polytechniques et universitaires romandes, Lausanne, Suisse.

Sohn, J., Kalbar, P., & Birkved, M. (2017). Life cycle based dynamic assessment coupled with multiple criteria decision analysis: A case study of determining an optimal building insulation level. Journal of Cleaner Production, 162, 449-457. DOI: 10.1016/j.jclepro.2017.06.058

Traverso M, Finkbeiner M, Jorgensen A and Schneider L (2012) Life cycle sustainability dashboard. J. Ind. Ecol. 16(5): 680-688. doi: 10.1111/j.1530-9290.2012.00497.x

United Nations Environnement Program – UNEP (2013) The methodological sheets for sub-categories in social life cycle assessment (SLCA). Life Cycle Initiative. http://lcinitiative.unep.fr/. Accessed 20 June 2015.

Vahdani B, Jabbari A H K, Roshnaei V, Zandieh M (2010) Extension of electre method for decision-making problems with interval weights and data. Int. J. Manuf. Technol. Manage. 50:793-800. Doi: 10.1007/s00170-010-2537-2

Vinyes, E., Oliver-Solà, J., Ugaya, C., Rieradevall, J. et Gasol, C. M. (2013) Application of LCSA to used cooking oil waste management. Int. J. Life Cycle Assess. 18: 445-455. doi: 10.1007/s11367-012-0482-z

Wernet G, Bauer C. Steubing B, Reinhard J., Moreno-Ruiz E, and Weidema B (2016). The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21(9), pp.1218–1230. doi: 10.1007/s11367-016-1087-8.

Yanarella E J, Levine R S and Lancaster R W (2009) Sustainability. The Journal of Record, 2(5) pp. 296-302.

Yang Z L and Wang B J (2011) Approximate Topsis for vessel selection under uncertain environment. Expert Syst. Appl. 38: 14523-14534. doi: 10.1016/j.eswa.2011.05.032

Zhang K and Achari G (2010) Uncertainty propagation in environmental decision making using random sets. Procedia Environ. Sci. 2: 576-584. Doi: 10.1016/j.proenv.2010.10.063

Zamagni A, Pesonen H-L and Swarr T (2013) From LCA to life cycle sustainability assessment: concept, practice and future directions. Int. J. Life Cycle Assess. 18: 1637-1641. doi: 10.1007/s11367-013-0648-3

Publicado

2020-10-24

Como Citar

Carmo, B. B. T. do, Margni, M., & Baptiste, P. (2020). Ranqueamento de sistemas de produtos baseado na avaliação da sustentabilidade do ciclo de vida: tomada de decisão estocástica baseada em múltiplos critérios. Revista De Administração Da UFSM, 13(4), 850–874. https://doi.org/10.5902/1983465955294

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)