Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach

Authors

  • Breno Barros Telles do Carmo Federal University od Semiarid Region http://orcid.org/0000-0002-7506-7037
  • Manuele Margni École Polytechnique de Montréal
  • Pierre Baptiste École Polytechnique de Montréal

DOI:

https://doi.org/10.5902/1983465955294

Keywords:

Life cycle sustainability assessment, Multiple criteria decision analysis, Uncertainty, Decision-making.

Abstract

Purpose – Life cycle sustainability assessment (LCSA) provides useful and comprehensive information on product system performance. However, it poses several challenges for decision-making process due to (i) multidimensional indicators, (ii) conflicting objectives and (iii) uncertainty associated with the performance assessment. This research proposes an approach able to account uncertain life cycle sustainability performances through multiple criteria decision analysis (MCDA) process to support decision-making.

Design/methodology/approach – Our method is structured in three phases: i) assessing the uncertainty of LCSA performances, ii) propagating LCSA uncertainty into MCDA methods and iii) interpreting the stochastic results. The approach is applied on an illustrative case study, ranking four alternatives to biodiesel supply.

Findings –The recommendation generated by this approach provides an information about the confidence the decision maker can have in a given result (ranking of solutions) under the form of a probability, providing a better knowledge of the risk (in this case due to the uncertainty of the preferred solution). As such, stochastic results, if appropriately interpreted, provide a measure of the robustness of the rankings generated by MCDA methods, overcoming the limitation of the overconfidence of deterministic rankings.

Originality/value – The fundamental contributions of this paper are to (i) integrate LCSA uncertainty into decision-making processes through MCDA approach; (ii) provide a sensitivity analysis about the MCDA method choice, (iii) support decision-makers’ preference choices through a transparent elicitation process and (iv) provide a practical decision-making platform that accounts simultaneously uncertain LCSA performances with stakeholders’ value judgments.

Downloads

Download data is not yet available.

References

Amiri M, Nosratian N E, Jamshidi A and Kazemi A (2008) Developing a new electre method with interval data in multiple attribute decision making problems. J. Appl. Sci. 22: 4017-4028.

Balali V, Zahraie B and Roozbahni A (2014) Integration of Electre III and Promethee II decision-making methods with an interval approach: application in selection of appropriate structural systems. J. Comput. Civil Eng. 28(2): 297-314. doi: 10.1061/(ASCE)CP.1943-5487.0000254

Bachmann T M (2013) Towards life cycle sustainability assessment: drawing on NEEDS project’s total cost and multi-criteria decision analysis ranking methods. Int. J. Life Cycle Assess.18: 1698-1709. doi: 10.1007/s11367-012-0535-3

Bengtson M (2001) Weighting in practice. J. Ind. Ecol. Ecology. 4(4): 47-60. doi: 10.1162/10881980052541945

Brans J-P and Mareschal B (2005) Promethee methods. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 133-161.

Carmo BBT, Margni M, Baptiste P (2017) Addressing uncertain scoring and weighting factors in social life cycle assessment. Int J Life Cycle Assess. doi:10.1007/s11367-017-1275

Carmo BBT, Margni M, Baptiste P (2017) Customized scoring and weighting approaches for quantifying and aggregating results in social life cycle impact assessment. Int J Life Cycle Assess. doi: 10.1007/s11367-017-1280-4

Chai J, Liu J N K, Ngai E W T (2013) Application of decision-making techniques in supplier selection: a systematic review of literature. Expert Syst. Appl. 40: 3872-3885. doi: 10.1016/j.eswa.2012.12.040

Clavreul J, Guyonnet D, Tonini D and Christensen T H (2013) Stochastic and epistemic uncertainty propagation in LCA. Int. J. Life Cycle Assess. 18:1393-1403. doi: 10.1007/s11367-013-0572-6.

Cucurachi S, Seager T P, Prado V (2017) Normalization in comparative life cycle assessment to support environmental decision making. J. Ind. Ecol. Doi: 10.1111/jiec.12549

Edwards W and Barron F H (1994) SMARTS and SMARTER: improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes. 60 (3): 306-325. doi: 10.1006/obhd.1994.1087

Fagnen, S, Ménard J F, Brodeur C, Beaudoin D, Lamarche V, Réveret J P (2010) Analyse environnementale et socio-économique de l’utilisation de biodiesel en remplacement des produits pétroliers dans les autobus de la STM. Rapport d’analyse préliminaire CIRAIG, Montréal.

Finkbeiner M, Schau E M, Lehmann A and Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2:3309-3322. doi: 10.3390/su2103309

Goumas M and Lygerou V (2000) An extension of the Promethee method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 123:606-613. Doi: 10.1016/S0377-2217(99)00093-4

Guitouni A and Martel J-M (1998) Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109:501-521. doi: 10.1016/S0377-2217(98)00073-3

Halog A and Manik Y (2011) Advancing integrated systems modeling framework for life cycle sustainability assessment. Sustainability 3: 469-499. Doi: 10.3390/su3020469

Hanandeh A E and El-Zein (2010) The development and application of multi-criteria decision-making tool with consideration of uncertainty: The selection of a management strategy for the bio-degradable fraction in the municipal solid waste. Bioresour. Technol. 101: 555-561. doi: 10.1016/j.biortech.2009.08.048

Heijungs R, Huppes G and Guinée J B (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym. Degrad. Stab. 95: 422-428. doi: 10.1016/j.polymdegradstab.2009.11.010

Henriksson PJG, Heijungs R, Dao HM, Phan LT, de Snoo GR, Guinée JB (2015) Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts. PLoS ONE 10(3): e0121221. doi:10.1371/journal.pone.0121221

Hyde K, Maier H R and Colby C (2003) Incorporating uncertainty in Promethee MCDA method. J. Multi-Crit.Decis. Anal. 12:245-259. doi: 10.1002/mcda.361

Jolliet, O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G and Rosenbaum R (2003). IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess 8(6): 324-330. doi: 10.1007/BF02978505

Kalbar, P.P., Birkved, M., Nygaard, S.E. and Hauschild, M (2017). Weighting and Aggregation in Life Cycle Assessment: Do Present Aggregated Single Scores Provide Correct Decision Support?. Journal of Industrial Ecology, 21(6), pp.1591-1600.

Keller H, Rettenmaier N, Reinhardt G A (2015) Integrated life cycle sustainability assessment - a practical approach. Appl. Energy 154:1072-1081. doi: 10.1016/j.apenergy.2015.01.095

Klöpffer W and Ciroth A (2011) Is LCC relevant in a sustainable assessment? Int. J. Life Cycle Assess. 16: 99-101. doi: 10.1007/s11367-011-0249-y

Laurin L, Amor B, Bachmann T M, Bare J, Koffler C, Genest S, Preiss P, Pierce J, Satterfield B and Vigon B (2016) Life cycle assessment capacity roadmap (section 1): decision-making support using LCA. Int. J. Life Cycle Assess.21: 443-447. doi: 10.1007/s11367-016-1031-y

Le Téno J F and Mareschal B (1998) An interval version of Promethee for the comparison of building products’ design with ill-defined data on environmental quality. Eur. J. Oper. Res. 109: 522-529. doi: 10.1016/S0377-2217(98)00074-5

Prado-Lopez, V., Seager, T.P., Chester, M. et al. Int J Life Cycle Assess (2014) 19: 405. https://doi.org/10.1007/s11367-013-0641-x

Prado‐Lopez, V. , Wender, B. A., Seager, T. P., Laurin, L. , Chester, M. and Arslan, E. (2016), Tradeoff Evaluation Improves Comparative Life Cycle Assessment: A Photovoltaic Case Study. Journal of Industrial Ecology, 20: 710-718. doi:10.1111/jiec.12292

Lora E E S, Palacio J C E, Rocha M H, Reno M L G, Venturini O J and Olmo O A (2011) Issues to consider, existing tools and constraints in biofuels sustainability assessments. Energy. 36:2097-2110. Doi: 10.1016/j.energy.2010.06.012

Marinoni O (2005) A stochastic special decision support system based on Promethee. International Journal of Geographical Information Science, 19(1): 51-68. doi: 10.1080/13658810412331280176

Martín-Gamboa M, Iribarren D, García-Gusano, D and Dufour J (2017) A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Cleaner Prod. 164-174. doi: 10.1016/j.jclepro.2017.03.017

Mousseau V (2003) Elicitation des préférences pour l’aide multicritère à la decision. Mémoire. Université Paris Dauphine.

Myllyviita T, Holma A, Antikainen R, Lähtinen K and Leskinen P (2012) Assessing environmental impacts of biomass production chains – application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). J. Cleaner Prod. 238-245. doi: 10.1016/j.jclepro.2012.01.019

Nie R, Tian Z, Wang J, Zhang H, Wang T (2018) Water security sustainability evaluation: Applying a multistage decision support framework in industrial region, J. Cleaner Prod. 196: 1681-1704. doi: 10.1016/j.jclepro.2018.06.144.

Onat N C, Kucukvar M, Tatari O and Zheng Q P (2016) Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternarive passage cars in U. S. J. Cleaner Prod. 291-307. doi: 10.1016/j.jclepro.2015.09.021

Pope J, Annandale D and Morisson-Saunders A (2004) Conceptualising sustainability assessment. Environmental Impact Assessment Review. 24: 595-616. doi: 10.1016/j.eiar.2004.03.001

Qiao, D., Shen, K., Wang, J. et al. J Ambient Intell Human Comput (2019). https://doi.org/10.1007/s12652-019-01251-z

Qureshi M N, Kumar D and Kumar P (2007) Selection of potential 3PL services providers using Topsis with interval data. IEEE International Conference on Industrial Engineering and Engineering Management 1512-1516. doi: 10.1109/IEEM.2007.4419445

Roberts R and Goodwin P (2002) Weight approximations in multi-attribute decision models. J. Multi-Crit. Decis. Anal. 11: 291-303. Doi: 10.1002/mcda.320.

Rowley, H. V., G. M. Peters, S. Lundie, and S. J. Moore. 2012. Aggregating sustainability indicators: Beyond the weighted sum. Journal of Environmental Management 111: 24–33.

Roy B (2005) Paradigms and Challenges. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 4-24.

Saaty T L (2005) The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In Figueira J, Greco S and Ehrgott M (ed) Multiple Criteria Decision Analysis: State of Art, Surveys. Springer, Boston, pp 344-407.

Sanchez-Ramirez PK, Petti L, Haberland NT, Ugaya CML (2014) Subcategory assessment method for social life cycle assessment. Part 1: methodological framework. Int J Life Cycle Assess 19: 1515–1523

Sayydi M and Makui A (2012) A new view to uncertainty in Electre III method by introducing interval numbers. Decision Science Letters 1:33-38. Doi: 10.5267/j.dsl.2012.06.002

Shärlig A (1985) Décider sur plusieurs critères: panorama de l'aide à la décision multicritère. Presses polytechniques et universitaires romandes, Lausanne, Suisse.

Sohn, J., Kalbar, P., & Birkved, M. (2017). Life cycle based dynamic assessment coupled with multiple criteria decision analysis: A case study of determining an optimal building insulation level. Journal of Cleaner Production, 162, 449-457. DOI: 10.1016/j.jclepro.2017.06.058

Traverso M, Finkbeiner M, Jorgensen A and Schneider L (2012) Life cycle sustainability dashboard. J. Ind. Ecol. 16(5): 680-688. doi: 10.1111/j.1530-9290.2012.00497.x

United Nations Environnement Program – UNEP (2013) The methodological sheets for sub-categories in social life cycle assessment (SLCA). Life Cycle Initiative. http://lcinitiative.unep.fr/. Accessed 20 June 2015.

Vahdani B, Jabbari A H K, Roshnaei V, Zandieh M (2010) Extension of electre method for decision-making problems with interval weights and data. Int. J. Manuf. Technol. Manage. 50:793-800. Doi: 10.1007/s00170-010-2537-2

Vinyes, E., Oliver-Solà, J., Ugaya, C., Rieradevall, J. et Gasol, C. M. (2013) Application of LCSA to used cooking oil waste management. Int. J. Life Cycle Assess. 18: 445-455. doi: 10.1007/s11367-012-0482-z

Wernet G, Bauer C. Steubing B, Reinhard J., Moreno-Ruiz E, and Weidema B (2016). The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21(9), pp.1218–1230. doi: 10.1007/s11367-016-1087-8.

Yanarella E J, Levine R S and Lancaster R W (2009) Sustainability. The Journal of Record, 2(5) pp. 296-302.

Yang Z L and Wang B J (2011) Approximate Topsis for vessel selection under uncertain environment. Expert Syst. Appl. 38: 14523-14534. doi: 10.1016/j.eswa.2011.05.032

Zhang K and Achari G (2010) Uncertainty propagation in environmental decision making using random sets. Procedia Environ. Sci. 2: 576-584. Doi: 10.1016/j.proenv.2010.10.063

Zamagni A, Pesonen H-L and Swarr T (2013) From LCA to life cycle sustainability assessment: concept, practice and future directions. Int. J. Life Cycle Assess. 18: 1637-1641. doi: 10.1007/s11367-013-0648-3

Downloads

Published

2020-10-24

How to Cite

Carmo, B. B. T. do, Margni, M., & Baptiste, P. (2020). Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach. Revista De Administração Da UFSM, 13(4), 850–874. https://doi.org/10.5902/1983465955294

Issue

Section

Articles

Most read articles by the same author(s)