Análise multitemporal de áreas afetadas pelo fogo no enclave de cerrado do Parque Nacional dos Campos Amazônicos utilizando sensoriamento remoto e trabalho de campo

Daniel Borini Alves, Fernando Pérez-Cabello, Bruno Contursi Cambraia, Francismeire Bonadeu, Antônio Laffayete Pires da Silveira

Resumo


Monitorar e entender as relações entre o fogo e as formações vegetais nos ambientes de transição do Cerrado e a Amazônia segue um desafio científico muito importante para ampliar a capacidade de gestão destas áreas. Neste contexto, o presente artigo analisa as respostas da vegetação ao fogo no maior enclave de Cerrado da Amazônia Meridional (Enclave de Cerrado dos Campos Amazônicos), mediante o uso de séries multitemporais de sensoriamento remoto e informações derivadas de trabalho de campo. Com base na disponibilidade de imagens da série Landsat, e no fusionado de imagens de Landsat e MODIS, foi gerada uma série multitemporal índices espectrais (NDVI e NBR) para o intervalo temporal de 2009-2016 (com 8 registros para cada ano), contrastando o comportamento de grupos amostrais afetados pelo fogo apenas em 2010, em 2010 e 2014 ou em 2010 e 2016. Estas informações foram complementadas com dados de campo obtidos numa campanha realizada no pós-fogo de 2016. Os valores de NDVI e NBR se demonstraram sensíveis a ação do fogo sobre a vegetação, apresentando descensos abruptos associados as queimas (em média ~93 % inferiores aos apresentados para áreas não queimadas no mesmo período). Nas informações obtidas em campo se destaca o maior acúmulo de biomassa seca registrado nas parcelas com mais tempo sem queima (~146% superior), no comparativo com áreas de queima recente. Estes resultados auxiliam na compreensão da incidência do fogo sobre estes ambientes, contribuindo com a implementação do plano de manejo de fogo da área estudada.

Texto completo:

PDF

Referências


ALVES, D. B.; MONTORIO LLOVERÍA, R.; PÉREZ-CABELLO, F.; VLASSOVA, L. Fusing Landsat and MODIS data to retrieve multispectral information from fire-affected areas over tropical savannah environments in the Brazilian Amazon. International Journal of Remote Sensing, v. 39, p. 1–23, 2018.

ALVES, D. B.; PÉREZ-CABELLO, F. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon). Science of The Total Environment, v. 601–602, p. 142–158, 2017.

ARAGÃO, L. E. O. C.; MALHI, Y.; BARBIER, N.; LIMA, A.; SHIMABUKURO, Y. E.; ANDERSON, L.; SAATCHI, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical transactions of the Royal Society of London Series B, Biological sciences, v. 363, p. 1779–1785, 2008.

ASNER, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing, v. 22, n. 18, p. 3855–3862, 2001.

BARTELS, S. F.; CHEN, H. Y. H.; WULDER, M. A.; WHITE, J. C. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. Forest Ecology and Management, v. 361, p. 194–207, 2016.

BASTARRIKA, A.; ALVARADO, M.; ARTANO, K.; MARTINEZ, M. P.; MESANZA, A.; TORRE, L.; RAMO, R.; CHUVIECO, E. BAMS: a tool for supervised burned area mapping using Landsat data. Remote Sensing, v. 6, p. 12360–12380, 2014.

BATISTA, E. K. L.; RUSSELL-SMITH, J.; FRANÇA, H.; FIGUEIRA, J. E. C. An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: Outcomes of fire suppression policies. Journal of Environmental Management, v. 205, p. 40–49, 2018.

BOND, W. J.; WOODWARD, F. I.; MIDGLEY, G. F. The Global Distribution of Ecosystems in a world without Fire. New Phytologist, v. 165, n. 2, p. 525–538, 2005.

BOWMAN, D. M. J. S.; BALCH, J. K.; ARTAXO, P.; BOND, W. J.; CARLSON, J. M.; COCHRANE, M. A.; ANTONIO, C. M. D.; DEFRIES, R. S.; DOYLE, J. C.; HARRISON, S. P.; JOHNSTON, F. H.;

KEELEY, J. E.; KRAWCHUK, M. A.; KULL, C. A.; MARSTON, J. B.; MORITZ, M. A.; PRENTICE, I. C.; ROOS, C. I.; SCOTT, A. C.; SWETNAM, T. W.; VAN DER WERF, G. R.; PYNE, S. J. Fire in the Earth System. Science, v. 324, n. 5926, p. 481–484, 2009.

CARNEIRO FILHO, A. Cerrados amazônicos: fósseis vivos? Algumas reflexões. Revista do Instituto Geológico, v. 14, n. 1, p. 63–68, 1993.

CERTINI, G. Effects of fire on properties of forest soils: A review. Oecologia, v. 143, n. 1, p. 1–10, 2005.

CLAVERIE, M.; MASEK, J. G.; JU, J.; DUNGAN, J. L. Harmonized Landsat-8 Sentinel 2 (HLS) Product User’s Guide, NASA, 2017. Disponível em: . Acesso em 05 de jun de 2018.

COUTINHO, L. M. Fire in the Ecology of the Brazilian Cerrado. In: GOLDAMMER, J. G. (Ed.). Fire in the Tropical Biota. Berlin: Springer, p. 82–105, 1990.

DANTAS, V. de L.; BATALHA, M. A.; PAUSAS, J. G. Fire drives functional thresholds on the savanna – forest transition. Ecology, v. 94, n. 11, p. 2454–2463, 2013.

DE SANTIS, A.; CHUVIECO, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sensing of Environment, v. 113, n. 3, p. 554–562, 2009.

DURIGAN, G.; RATTER, J. A. The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology, v. 53, n. 1, p. 11–15, 2016.

ESCUIN, S.; NAVARRO, R.; FERNÁNDEZ, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, v. 29, n. 4, p. 1053–1073, 2008.

ESPINDOLA, G. M.; AGUIAR, A. P. D.; PEBESMA, E.; CÂMARA, G.; FONSECA, L. Agricultural land use dynamics in the Brazilian Amazon based on remote sensing and census data. Applied Geography, v. 32, n. 2, p. 240–252, 2012.

EVA, H.; LAMBIN, E. F. Fires and land-cover change in the tropics: a remote sensing analysis at the landscape scale. Journal of Biogeography, v. 27, n. 3, p. 765–776, 2000.

FIDELIS, A.; PIVELLO, V. R. Deve-se usar o fogo como instrumento de manejo no Cerrado e Campos Sulinos? Biodiversidade Brasileira, v. 1, n. 2, p. 12–25, 2011.

FIGUEIRA, J. E. C.; RIBEIRO, K. T.; RIBEIRO, M. C.; JACOBI, C. M.; FRANÇA, H.; NEVES, A. C. de O.; CONCEIÇÃO, A. A.; MOURÃO, F. A.; SOUZA, J. M.; MIRANDA, C. A. de K. Fire in Rupestrian Grasslands: Plant Response and Management. In: FERNANDES, G. W. (Ed.). Ecology and Conservation of Mountaintop grasslands in Brazil. Belo Horizonte, Brasil: Springer International Publishing, p. 415–448, 2016.

GAO, F.; MASEK, J.; SCHWALLER, M.; HALL, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, v. 44, n. 8, p. 2207–2218, 2006.

GAO, F.; MORISETTE, J. T.; WOLFE, R. E.; EDERER, G.; PEDELTY, J.; MASUOKA, E.; MYNENI, R.; TAN, B.; NIGHTINGALE, J. An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geoscience and Remote Sensing Letters, v. 5, n. 1, p. 60–64, 2008.

GIGLIO, L.; RANDERSON, J. T.; VAN DER WERF, G. R.; KASIBHATLA, P. S.; COLLATZ, G. J.; MORTON, D. C.; DEFRIES, R. S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences, v. 7, p. 1171–1186, 2010.

GIGNOUX, J.; CLOBERT, J.; MENAUT, J.-C. Alternative fire resistance strategies in savanna trees. Oecologia, v. 110, n. 4, p. 576–583, 1997.

GOLDAMMER, J. G. Historical biogeography of fire: tropical and subtropical. In: CRUTZEN, P. J.; GOLDAMMER, J. G. (Ed.). The ecological, atmospheric and climatic importance of vegetation fires. New York: John Wiley & Sons, Ltd, p. 297–314, 1993.

HARDESTY, J.; MYERS, R.; FULKS, W. Fire, ecosystems and people: a preliminary assessment of fire as a global conservation issue. Fire Management, v. 22, n. 4, p. 78–87, 2005.

HILKER, T.; WULDER, M. a.; COOPS, N. C.; LINKE, J.; MCDERMID, G.; MASEK, J. G.; GAO, F.; WHITE, J. C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, v. 113, n. 8, p. 1613–1627, 2009.

HOFFMANN, W. A.; ADASME, R.; HARIDASAN, M.; DE CARVALHO, M. T.; GEIGER, E. L.; PEREIRA, M. A. B.; GOTSCH, S. G.; FRANCO, A. C. Tree topkill, not mortality, governs the dynamics of savanna-forest boundaries under frequent fire in central Brazil. Ecology, v. 90, n. 5, p. 1326–1337, 2009.

HOFFMANN, W. A.; MOREIRA, A. G. The role of fire in population dynamics of woody plants. In: OLIVEIRA, P. S.; MARQUIS, R. (Ed.). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York, EUA: Columbia University Press, p. 139–177, 2002.

ICMBIO, Instituto Chico Mendes de Conservação da Biodiversidade. Plano de Manejo do Parque Nacional dos Campos Amazônicos. Brasília, Brasil: Ministério do Meio Ambiente (MMA), 2016.

KEY, C. H.; BENSON, N. C. Landscape assessment (LA): Sampling and analysis methods. In: LUTES, D. C.; KEANE, R. E.; CARATTI, J. F.; KEY, C. H.; BENSON, N. C.; SUTHERLAND, S.; GANGI, L. J. (Ed.). FIREMON: Fire effects monitoring and inventory system. Fort Collins, CO, USA: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 1–55, 2006.

KOUTSIAS, N.; KARTERIS, M. Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image. International Journal of Remote Sensing, v. 21, n. 4, p. 673–687, 2000.

LARIS, P.; WARDELL, D. A. Good, bad or “necessary evil”? Reinterpreting the colonial burning experiments in the savanna landscapes of West Africa. Geographical Journal, v. 172, n. 4, p. 271–290, 2006.

LEDRU, M.-P. Late Quaternary History and Evolution of the Cerrados as Revealed by Palynological Records. In: OLIVEIRA, P.; MARQUIS, P. J. (Ed.). The Cerrados of Brazil: ecology and natural history of a Neotropical Savanna. New York, EUA: Columbia University Press, 2002.

LEVINE, J. S.; COFER, W. R.; CAHOON, D. J.; WINSTEAD, E. L. Biomass burning - a driver for global change. Environmental Science & Technology, v. 29, n. 3, p. 120–125, 1995.

MARENGO, J. A.; LIEBMANN, B.; KOUSKY, V. E.; FILIZOLA, N. P.; WAINER, I. C. Onset and end of the rainy season in the Brazilian Amazon Basin. Journal of Climate, v. 14, n. 5, p. 833–852, 2001.

MASEK, J. G.; VERMOTE, E. F.; SALEOUS, N. E.; WOLFE, R.; HALL, F. G.; HUEMMRICH, K. F.; GAO, F.; KUTLER, J.; LIM, T. A Landsat Surface Reflectance Dataset for North America, 1990-2000. IEEE Geoscience and Remote Sensing Letters, v. 3, n. 1, p. 68–72, 2006.

MIRANDA, H. S.; SATO, M. N.; NASCIMENTO NETO, W.; AIRES, F. S. Fires in the cerrado, the Brazilian savanna. In: COCHRANE, M. A. (Ed.). Tropical Fire Ecology: Climate change, land use, and ecossystem dynamics. Chichester, UK: Springer Berlin Heidelberg, 2009. p. 427–450.

MISTRY, J.; BERARDI, A.; ANDRADE, V.; KRAHÔ, T.; KRAHÔ, P.; LEONARDOS, O. Indigenous fire management in the cerrado of Brazil: The case of the Krahô of Tocantíns. Human Ecology, v. 33, n. 3, p. 365–386, 2005.

MOREIRA, A. G. Effects of fire protection on savanna structure in central Brazil. Journal of Biogeography, v. 27, n. 4, p. 1021–1029, 2000.

MORTON, D. C.; DEFRIES, R. S.; SHIMABUKURO, Y. E.; ANDERSON, L. O.; ARAI, E.; ESPIRITO-SANTO, F. del B.; FREITAS, R.; MORISETTE, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, v. 103, n. 39, p. 14637–14641, 2006.

MUNHOZ, C. B. R.; FELFILI, J. M. Fitossociologia do estrato herbáceo-subarbustivo de uma área de campo sujo no Distrito Federal, Brasil. Acta Botanica Brasilica, v. 23, n. 3, p. 671-685, 2006

NEPSTAD, D.; CARVALHO, G.; BARROS, A. C.; ALENCAR, A.; CAPOBIANCO, J. P.; BISHOP, J.; MOUTINHO, P.; LEFEBVRE, P.; SILVA JR., U. L.; PRINS, E. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, v. 154, p. 397–407, 2001.

OLIVEIRA-FILHO, A. T.; RATTER, J. A. Vegetation physiognomies and woody flora of the Cerrado Biome. In: OLIVEIRA, P. S.; MARQUIS, R. J. (Ed.). The Cerrados of Brazil: ecology and natural history of a neotropical savanna. New York, EUA: Columbia University Press, 2002. p. 91–120.

OMETTO, J. P.; SOUZA-NETO, E. r.; TEJADA, G. Land Use, Land Cover and Land Use Change in the Brazilian Amazon (1960–2013). In: NAGY, L.; FORSBERG, B. R.; ARTAXO, P. (Ed.). Interactions between biosphere, atmosphere and human land use Amazon Basin - Ecological Studies. Berlin, Heidelberg: Springer Berlin, p. 369–384, 2016.

PAUSAS, J. G.; KEELEY, J. E. A burning story: The role of fire in the history of life. BioScience, v. 59, n. 7, p. 593–601, 2009.

PEREIRA, J. M. C. Remote sensing of burned areas in tropical savannas. International Journal of Wildland Fire, v. 12, n. 4, p. 259–270, 2003.

PETTORELLI, N.; VIK, J. O.; MYSTERUD, A.; GAILLARD, J. M.; TUCKER, C. J.; STENSETH, N. C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, v. 20, n. 9, p. 503–510, 2005.

PIVELLO, V. R. The use of fire in the cerrado and amazonian rainforests of Brazil: past and present. Fire Ecology, v. 7, n. 1, p. 24–39, 2011.

RAMOS-NETO, M. B.; PIVELLO, V. R. Lightning fires in a Brazilian Savanna National Park: rethinking management strategies. Environmental Management, v. 26, n. 6, p. 675–684, 2000.

RATTER, J. A.; BRIDGEWATER, S.; RIBEIRO, J. F. Analysis of the floristic composition of the Brazilian cerrado vegetation: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, n. 60, p. 57–109, 2003.

RÖDER, A.; HILL, J.; DUGUY, B.; ALLOZA, J. A.; VALLEJO, R. Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors - a case study in the Ayora region (eastern Spain). Remote Sensing of Environment, v. 112, n. 1, p. 259–273, 2008.

RODRÍGUEZ, D. Bulbostylis paradoxa (Cyperaceae), nuevo registro para la flora de El Salvador. Phytoneuron, n. 71, p. 1-3, 2014.

ROUSE, J. W.; HASS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. In: S. C. FREDEN, E. P. MERCANTI, M. A. BECKER, (Eds.). Third Earth Resources Technology Satellite (ERTS) Symposium, Washington, DC, United States. Proceedings... Washington, DC, United States: NASA Goddard Space Flight Center, 1974. Disponível em: . Acesso em 13 de set de 2017.

SALGADO-LABOURIAU, M. L.; FERRAZ-VICENTINI, K. R. Fire in the Cerrado 32,000 years ago. Current Research in the Pleistocene, v. 11, p. 85–87, 1994.

SANO, E. E.; FERREIRA, L. G.; ASNER, G. P.; STEINKE, E. T. Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing, v. 28, n. 12, p. 2739–2752, 2007.

SCHMIDT, I. B.; MOURA, L. C.; FERREIRA, M. C.; ELOY, L.; SAMPAIO, A. B.; DIAS, P. A.; BERLINCK, C. N. Fire management in the Brazilian savanna: First steps and the way forward. Journal of Applied Ecology, n. October/17, p. 1–8, 2018.

SEXTON, J. O.; SONG, X.-P.; FENG, M.; NOOJIPADY, P.; ANAND, A.; HUANG, C.; KIM, D.-H.; COLLINS, K. M.; CHANNAN, S.; DIMICELI, C.; TOWNSHEND, J. R. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS Vegetation Continuous Fields with LIDAR-based estimates of error. International Journal of Digital Earth, v. 6, n. 5, p. 427–448, 2013.

SILVEIRA, L.; DE ALMEIDA JACOMO, A. T.; DINIZ FILHO, J. A. F.; RODRIGUES, F. H. G. Impact of wildfires on the megafauna of Emas National Park, central Brazil. Oryx, v. 33, n. 2, p. 108–114, 1999.

TRIGG, S.; FLASSE, S. Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry. International Journal of Remote Sensing, v. 21, n. 16, p. 3161–3168, 2000.

TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, v. 8, n. 2, p. 127–150, 1979.

USGS, United States Geological Servey. Landsat Collection 1 Level 1 Product. Sioux Falls, South Dakota, USA, 2017. Disponível em: . Acesso em 10 de dez de 2017.

USGS, United States Geological Servey. Landsat 8 Surface Reflectance Code (LaSRC) Product Guide, 2018. Disponível em: . Acesso em 10 de jun de 2018.

VERMOTE, E. F.; EL SALEOUS, N.; JUSTICE, C. O.; KAUFMAN, Y. J.; PRIVETTE, J. L.; REMER, L.; ROGER, J. C.; TANRÉ, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. Journal of Geophysical Research, v. 102, p. 17131, 1997.

VERMOTE, E.; WOLFE, R. MYD09GQ MODIS/Aqua Surface Reflectance Daily L2G Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015a. Disponível em: . Acesso em 10 de nov de 2016.

VERMOTE, E.; WOLFE, R. MOD09GA MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015b. Disponível em: . Acesso em 10 de nov de 2016.

WHITE, J. C.; WULDER, M. A.; HERMOSILLA, T.; COOPS, N. C.; HOBART, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, v. 194, p. 303–321, 2017.

WIMBERLY, M. C.; REILLY, M. J. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, v. 108, n. 2, p. 189–197, 2007.

ZHU, X.; CHEN, J.; GAO, F.; CHEN, X.; MASEK, J. G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, v. 114, n. 11, p. 2610–2623, 2010.

ZHU, X.; HELMER, E. H.; GAO, F.; LIU, D.; CHEN, J.; LEFSKY, M. A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, v. 172, p. 165–177, 2016.




DOI: http://dx.doi.org/10.5902/2236499433584

Apontamentos

  • Não há apontamentos.


Indexações e Bases Bibliográficas