Commodities production in family farming: analysis of institutional determinants in northern mato grosso

Authors

DOI:

https://doi.org/10.5902/1414650940741

Keywords:

Factorial Analysis, Institutional arrangements, Agribusiness

Abstract

Promoting rural development is a challenge for public policies that may be promising or ineffective, it involves dealing with diverse realities and concepts in rural areas. By involving family farming the problem become complex because of the broad possibilities in arrangement of productive units. This work aimed to analyze which mechanisms allow family farmers to integrate soybean production in Mato Grosso, challenging the actual paradigm. Exploratory Factor Analysis (EFA) was used to elaborate the index of technological and productive adhesion in family farming (IIAF). The results demonstrated that to develop soybean production, family farmers contract harvesting services that reduce their need for long-term investment and credit agreements with tradings that provide short-term financial needs. Even tough institutional innovation contributes to family’s income, it does not change the technological paradigm based in economies of scale, therefore, restricting the entrance of family farmers that do not possess capital, technology, and adaption to the supply chain requisites.

Downloads

Download data is not yet available.

References

ABRAMOVAY, R. Paradigmas do Capitalismo Agrária em Questão. Campinas: Hucitec, 2007.

ADENLE, A. A.; MANNING, L.; AZADI, H. Agribusiness innovation: A pathway to sustainable economic growth in Africa. Trends in Food Science & Technology, v. 59, p. 88–104, 2017.

AMARAL, M. C. F. et al. Management and technological practices in Amazonian fish farms: A case study in the Southeast of Pará. Aquaculture, v. 507, p. 183–189, 2019.

BARTHOLOMEW, D. J. et al. Analysis of Multivariate Social Science Data. 2 ed ed. Boca Raton: Taylor & Francis Group, 2008.

BELIK, W.; PAULILLO, L. F. O Financiamento da produção agrícola brasileira na década de 90: ajustamento e seletividade. In: LEITE, S. P. (Ed.). . Políticas públicas e agricultura no Brasil. Porto Alegre: Editora da UFRGS, 2009. p. 97–122.

BERGER, M.; ORTEGA, F. Poblaciones expuestas a agrotóxicos: autoorganización ciudadana en la defensa de la vida y la salud, Ciudad de Córdoba, Argentina. Physis: Revista de Saúde Coletiva, v. 20, n. 1, p. 119–143, 2010.

CEPEA/ESALQ. PIB do agronegócio brasileiro de 1996 a 2018. Disponível em: <http://www.cepea.esalq.usp.br/upload/kceditor/files/PIB Agronegócio_Cepea_1996_2017.xlsx>. Acesso em: 9 out. 2018.

CONAB. Séries Históricas – Soja. Disponível em: <https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras?start=30>. Acesso em: 8 maio. 2020.

DEFRIES, R. et al. Deforestation Drive by Urban Population Growth and Agricultural Trade in the Twenty-First Century. [s.l: s.n.]. v. 3

DUCHELLE, A. E. et al. Linking Forest Tenure Reform, Environmental Compliance, and Incentives: Lessons from REDD+ Initiatives in the Brazilian Amazon. World Development, v. 55, p. 53–67, mar. 2014.

ESTABROOK, R.; NEALE, M. A Comparison of Factor Score Estimation Methods in the Presence of Missing Data: Reliability and an Application to Nicotine Dependence. Multivariate behavioral research, v. 48, n. 1, p. 1–27, 1 jan. 2013.

FEARNSIDE, P. M. Soybean cultivation as a threat to the environment in Brazil. Environmental Conservation, v. 28, n. 1, p. 23–38, 2001.

GIBBS, H. K. et al. Brazil’s Soy Moratorium. Science , v. 347, n. 6220, p. 377–378, 23 jan. 2015.

GOLLNOW, F. et al. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy, v. 78, p. 377–385, 2018.

GOULSON, D. et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, v. 347, n. 6229, 27 mar. 2015.

HAIR, J. F. et al. Multivariate Data Analysis. 17 ed ed. Harlow: Pearson, 2014.

IBGE. Censo Agropecuário. Disponível em: . Acesso em: 30 mar. 2018.

IBGE. Censo Agropecuário 2017. Disponível em: <https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017>. Acesso em: 31 mar. 2020.

IBGE. Sistema IBGE de Recuperacao automatica–SIDRA. Disponível em: <http://www.sidra.ibge.gov.br/>. Acesso em: 17 abr. 2020.

IMEA. Quinta Estimativa da Safra de Soja – 2014/15. Disponível em: <http://www.imea.com.br/upload/publicacoes/arquivos/R404__5a_Estimativa_de_safra_de_Soja_2014-15___23-04-2015_AO.pdf>. Acesso em: 31 out. 2017.

IMEA. Sexta Estimativa da Safra de Soja – 2015/16. Disponível em: <http://www.imea.com.br/upload/publicacoes/arquivos/R404_6_Estimativa_Soja_safra_2015-16__16-04_29.pdf>. Acesso em: 31 out. 2017.

KLERKX, L.; AARTS, N.; LEEUWIS, C. Adaptive management in agricultural innovation systems: The interactions between innovation networks and their environment. Agricultural Systems, v. 103, n. 6, p. 390–400, jul. 2010.

PLOEG, J. D. VAN DER et al. Rural Development: From Practices and Policies towards Theory. Sociologia Ruralis, v. 40, n. 4, p. 391–408, 2000.

RODRIGUES, M.; SILVA, F. D. DA S.; SILVA, D. C. C. Family Farming and Biodiesel: rural development in Central-Western Brazil. Novos Cadernos NAEA, v. 22, n. 3, p. 25–44, 2019.

RUDORFF, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sensing, v. 3, n. 1, p. 185–202, 2011.

SANTANA, A. C. Índice de desempenho competitivo das empresas de polpa de frutas do Estado do Pará. Revista de Economia Rural, v. 45, n. 03, p. 749–775, 2007.

TIMM, N. H. Applied Multivariate Analysis. New York: Springer, 2002.

VANDER VENNET, B.; SCHNEIDER, S.; DESSEIN, J. Different farming styles behind the homogenous soy production in southern Brazil. The Journal of Peasant Studies, v. 43, n. 2, p. 396–418, 3 mar. 2016.

WESZ, V. J. La filiera della soia nell’America del Cono Sud: dinamiche, processi e attori. Rivista di Economia Agraria, v. 71, n. 1, p. 25–45, 2016.

Published

2021-01-26

How to Cite

Rodrigues, M., & Campos, I. (2021). Commodities production in family farming: analysis of institutional determinants in northern mato grosso. Economia E Desenvolvimento, 32(1), e10. https://doi.org/10.5902/1414650940741

Issue

Section

Articles