Efeito do tempo e áreas de uso agrícola no processo de decomposição de celulose

Autores

DOI:

https://doi.org/10.5902/1980509870837

Palavras-chave:

Decomposição de celulose, Decomposição de tiras de algodão, Métodos padronizados

Resumo

A conservação do solo em áreas agrícolas pode contribuir para a produtividade e produção sustentável. Nosso objetivo foi avaliar a taxa de perda de massa no processo de decomposição da celulose em sistemas agrícolas, em diferentes épocas de cultivo (mais de 30 anos vs. menos de 10 anos) considerando floresta em unidade de conservação e floresta antropizadas próxima, como sistemas de controle. Foram utilizados sacos de duas malhas (0,5 mm vs. 10 mm) na superfície do solo por 30, 60 e 90 dias em todos os sistemas (agrícolas vs. floresta antrópica e floresta em unidade de conservação). A decomposição diminuiu em um quarto (variação o tamanho do efeito ± -22 a -26%) nos sistemas agrícolas estudados em comparação com os sistemas florestais, evidenciando o processo de decomposição como um bom indicador ecológico. A alta riqueza de espécies e estratos vegetais em sistemas florestais aumentaram a perda de massa em comparação com sistemas agrícolas. A diferença entre 10 e 30 anos nos sistemas agrícolas variou de 3% (na decomposição total) a 7% (na decomposição microbiana), diminuindo em sistemas de 30 anos de uso. Além disso, percebemos que fragmentos florestais próximos a sistemas agrícolas podem funcionar como refúgios para macrofauna detritívora e assim ajudar a preservar este serviço ecossistêmico em áreas produtivas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Renan de Souza Rezende, Community University of Chapecó Region - Unochapecó

Possui graduação em Ciências Biológicas pelo Centro Universitário do Leste de Minas Gerais (UNILESTE - MG; 2006), mestrado em Ciências Biológicas pela Universidade Estadual de Montes Claros (UNIMONTES; 2009), doutorado em ecologia pela Universidade Federal de Santa Catarina (UFSC; 2014), Pós doutorado pelo INPA (Entomologia).

Bruna Valencio Cavallet, Community University of Chapecó Region - Unochapecó

Agronomist, Mr. in Environmental Sciences
Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil

Alana Maria Polesso, Community University of Chapecó Region - Unochapecó

Engenheira Agrônoma, formada pela Universidade Comunitária da Região de Chapecó - Unochapecó; Mestre (2019-2021) e Doutoranda (2021-2025) pelo Programa de Pós-Graduação Stricto Sensu em Ciências Ambientais - Unochapecó. 

Edpool Rocha Silva, Community University of Chapecó Region - Unochapecó

Possui graduação em Zootecnia (2017) com Ênfase em Produção Animal Sustentável pela Universidade do Estado de Santa Catarina UDESC Oeste. Durante a graduação foi bolsista de Iniciação Científica (2012-2016) do Laboratório de Solos e Sustentabilidade da UDESC Oeste.

Carolina Riviera Duarte Maluche Baretta, Community University of Chapecó Region - Unochapecó

Possui graduação em Agronomia pela Universidade do Estado de Santa Catarina (2001), especialização em Educação Ambiental pelo Instituto Brasileiro de Pós-Graduação e Extensão (2003), mestrado em Ciências do Solo pela Universidade do Estado de Santa Catarina (2004) e doutorado em Agronomia pelo Programa de Solos e Nutrição de Plantas da Universidade de São Paulo (2008). 

Referências

ALVIM, E. A. C. C.; MEDEIROS, A. de O.; REZENDE, R. S.; GONÇALVES, J. F. Small leaf breakdown in a Savannah headwater stream. Limnologica, [s. l.], v. 51, p. 131-138, 2015.

BANI, A.; PIOLI, S.; VENTURA, M.; PANZACCHI, P.; BORRUSO, L.; TOGNETTI, R.; TONON, G.; BRUSETTI, L. The role of microbial community in the decomposition of leaf litter and deadwood. Applied Soil Ecology, [s. l.], v. 126, p. 75-84, 2018.

BLEICH, M. E.; PIEDADE, M. T. F.; MORTATI, A. F.; ANDRÉ, T. Autochthonous primary production in southern Amazon headwater streams: Novel indicators of altered environmental integrity. Ecological Indicators, [s. l.], v. 53, n. 0, p. 154-161, 2015.

BRADFORD, M. A.; TORDOFF, G. M.; EGGERS, T.; JONES, T. H.; NEWINGTON, J. E. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, [s. l.], v. 99, n. 2, p. 317-323, 2002.

BROADBENT, A. A. D.; ORWIN, K. H.; PELTZER, D. A.; DICKIE, I. A.; MASON, N. W. H.; OSTLE, N. J.; STEVENS, C. J. Invasive N-fixer Impacts on Litter Decomposition Driven by Changes to Soil Properties Not Litter Quality. Ecosystems, [s. l.], v. 20, n. 6, p. 1151-1163, 2017.

BROOKER, R. W.; GEORGE, T. S.; HOMULLE, Z.; KARLEY, A. J.; NEWTON, A. C.; PAKEMAN, R. J.; SCHÖB, C. Facilitation and biodiversity–ecosystem function relationships in crop production systems and their role in sustainable farming. Journal of Ecology, [s. l.], v. 109, n. 5, p. 2054-2067, 2021.

BURGHARDT, K. T.; BRADFORD, M. A.; SCHMITZ, O. J. Acceleration or deceleration of litter decomposition by herbivory depends on nutrient availability through intraspecific differences in induced plant resistance traits. Journal of Ecology, [s. l.], v. 106, n. 6, p. 2380-2394, 2018.

BURKHARD, B.; LILL, A. Ecosystem Health Indicators. In: JØRGENSEN, S. E.; FATH, B. D. Ecological Indicators. Oxford, 2008, p. 1132-1138.

CAMPANELLA, M. V.; BERTILLER, M. B. Plant phenology, leaf traits and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. Journal of Vegetation Science, [s. l.], v. 19, n. 1, p. 75–85, 2008.

CANTY, A.; RIPLEY, B. Boot: Bootstrap R (S-Plus) functions. R package version 13-18.R Core Team2016.

CAPELLESSO, E. S.; SCROVONSKI, K. L.; ZANIN, E. M.; HEPP, L. U.; BAYER, C.; SAUSEN, T. L. Effects of forest structure on litter production, soil chemical composition and litter-soil interactions. Acta Botanica Brasilica, [s. l.], v. 30, n. 3, p. 329–335, 2016.

CARDOSO, E. J. B. N.; VASCONCELLOS, R. L. F.; BINI, D.; MIYAUCHI, M. Y. H.; SANTOS, C. A. dos; ALVES, P. R. L.; PAULA, A. M. de; NAKATANI, A. S.; PEREIRA, J. de M.; NOGUEIRA, M. A. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola, [s. l.], v. 70, n. 4, p. 274-289, 2013.

CATTELAN, A. J.; DALL’AGNOL, A. The rapid soybean growth in Brazil. OCL, [s. l.], v. 25, n. 1, p. D102, 2018.

CAVALLET, B. V.; SILVA, E. R.; BARETTA, C. R. D. M.; REZENDE, R. S. Effect of agriculture land use on standard cellulosic substrates breakdown and invertebrates’ community. Community Ecology, [s. l.], v. 23, p. 277-288, 2022.

COLAS, F.; WOODWARD, G.; BURDON, F. J.; GUÉROLD, F.; CHAUVET, E.; CORNUT, J.; CÉBRON, A.; CLIVOT, H.; DANGER, M.; DANNER, M. C.; PAGNOUT, C.; TIEGS, S. D. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecological Indicators, [s. l.], v. 106, p. 105466, 2019.

COONAN, E. C.; KIRKBY, C. A.; KIRKEGAARD, J. A.; AMIDY, M. R.; STRONG, C. L.; RICHARDSON, A. E. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics. Nutrient Cycling in Agroecosystems, [s. l.], v. 117, n. 3, p. 273-298, 2020.

CORNEJO, A.; PÉREZ, J.; LÓPEZ-ROJO, N.; GARCÍA, G.; PÉREZ, E.; GUERRA, A.; NIETO, C.; BOYERO, L. Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning. Environmental Pollution, [s. l.], v. 285, p. 117243, 2021.

CORREA-ARANEDA, F.; TONIN, A. M.; PÉREZ, J.; ÁLVAREZ, K.; LÓPEZ-ROJO, N.; DÍAZ, A.; ESSE, C.; ENCINA-MONTOYA, F.; FIGUEROA, R.; CORNEJO, A.; BOYERO, L. Extreme climate events can slow down litter breakdown in streams. Aquatic Sciences, [s. l.], v. 82, n. 2, p. 25, 2020.

COTRUFO, M. F.; GALDO, I. D.; PIERMATTEO, D. Litter decomposition: concepts, methods and future perspectives. In: HEINEMEYER, A.; BAHN, M.; KUTSCH, W. L. (org.). Soil Carbon Dynamics: An Integrated Methodology. Cambridge: Cambridge University Press, 2010. p. 76–90. Available at: https://www.cambridge.org/core/books/soil-carbon-dynamics/litter-decomposition-concepts-methods-and-future-perspectives/E08B8746FBA0B09EE00EF96A7F80C5C6.

CRAWLEY, M. J. The R Book. England: John Wiley & Sons Ltd, 2007. 2007.

DALE, V. H.; BEYELER, S. C. Challenges in the development and use of ecological indicators. Ecological Indicators, [s, l,], v. 1, p. 3-10, 2001.

DAVISON, A. C.; HINKLEY, D. V. Bootstrap Methods and their Application. Cambridge: Cambridge University Press, 1997. (Cambridge Series in Statistical and Probabilistic Mathematics). Available at: https://www.cambridge.org/core/books/bootstrap-methods-and-their-application/ED2FD043579F27952363566DC09CBD6A.

DUARTE, S.; PASCOAL, C.; GARABÉTIAN, F.; CÁSSIO, F.; CHARCOSSET, J.-Y. Microbial Decomposer Communities Are Mainly Structured by Trophic Status in Circumneutral and Alkaline Streams. Applied and Environmental Microbiology, [s. l.], v. 75, n. 19, p. 6211-6221, 2009.

FERREIRA, V.; BOYERO, L.; CALVO, C.; CORREA, F.; FIGUEROA, R.; GONÇALVES, J. F.; GOYENOLA, G.; GRAÇA, M. A. S.; HEPP, L. U.; KARIUKI, S.; LÓPEZ-RODRÍGUEZ, A.; MAZZEO, N.; M’ERIMBA, C.; MONROY, S.; PEIL, A.; POZO, J.; REZENDE, R.; TEIXEIRA-DE-MELLO, F. A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning. Ecosystems, [s. l.], v. 22, n. 3, p. 629-642, 2019.

FOUR, B.; CÁRDENAS, R. E.; DANGLES, O. Traits or habitat? Disentangling predictors of leaf‐litter decomposition in Amazonian soils and streams. Ecosphere, [s. l.], v. 10, n. 4, p. e02691, 2019.

FRANZLUEBBERS, A. J. Organic Residues, Decomposition. In: HILLEL, D. (org.). Encyclopedia of Soils in the Environment. Elsevier, 2005. p. 112-118. Available at: https://www.sciencedirect.com/science/article/pii/B0123485304001442.

FROUZ, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, [s. l.], v. 332, p. 161-172, 2018.

GRAÇA, M. A. S.; BARLOCHER, F.; GESSNER, M. O. Methods to Study Litter Decomposition. Dordrecht: Springer, 2005.

GUNSTONE, T.; CORNELISSE, T.; KLEIN, K.; DUBEY, A.; DONLEY, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Frontiers in Environmental Science, [s. l.], v. 9, p. 643847, 2021.

HALL, S. J.; RUSSELL, A. E.; MOORE, A. R. Do corn-soybean rotations enhance decomposition of soil organic matter? Plant Soil, [s. l.], p. 16, 2019.

HENEGHAN, L.; COLEMAN, D. C.; ZOU, X.; CROSSLEY, D. A.; HAINES, B. L. Soil Microarthropod Contributions to Decomposition Dynamics: Tropical-Temperate Comparisons of a Single Substrate. Ecology, [s. l.], v. 80, n. 6, p. 1873-1882, 1999.

HUANG, W.; GONZÁLEZ, G.; ZOU, X. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis. Applied Soil Ecology, [s. l.], v. 150, p. 103473, 2020.

KORICHEVA, J.; GUREVITCH, J.; MENGERSEN, K. Handbook of meta-analysis in ecology and evolution. Princeton: Princeton University Press, 2013.

KRAFT, E.; OLIVEIRA FILHO, L. C. I. de; CARNEIRO, M. C.; KLAUBERG-FILHO, O.; BARETTA, C. R. D. M.; BARETTA, D. Edaphic fauna affects soybean productivity under no-till system. Scientia Agricola, [s. l.], v. 78, n. 2, p. e20190137, 2021.

LÓPEZ-ROJO, N.; PÉREZ, J.; BASAGUREN, A.; POZO, J.; RUBIO-RÍOS, J.; CASAS, J. J.; BOYERO, L. Effects of two measures of riparian plant biodiversity on litter decomposition and associated processes in stream microcosms. Scientific Reports, [s. l.], v. 10, n. 1, p. 19682, 2020a.

LÓPEZ-ROJO, N.; PÉREZ, J.; POZO, J.; BASAGUREN, A.; APODAKA-ETXEBARRIA, U.; CORREA-ARANEDA, F.; BOYERO, L. Shifts in Key Leaf Litter Traits Can Predict Effects of Plant Diversity Loss on Decomposition in Streams. Ecosystems, [s. l.], 2020b. Available at: http://link.springer.com/10.1007/s10021-020-00511-w. Access in: 19 May 2020.

LUIS, S.; VALDINAR, M.; TALINE, N.; DIEGO, P.; ANGELICA, D.; SIMÓN, F. Soil chemical indicators and nutrient cycling variations across sequential years of rice cultivation: A case study of floodplain conditions of the Amazon, Brazil. African Journal of Agricultural Research, [s. l.], v. 14, n. 32, p. 1499–1508, 2019.

MARTIN-RUEDA, I.; MUÑOZ-GUERRA, L. M.; YUNTA, F.; ESTEBAN, E.; TENORIO, J. L.; LUCENA, J. J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil and Tillage Research, [s. l.], v. 92, n. 1, p. 1-9, 2007.

MEDEIROS, A. O.; CALLISTO, M.; GRAÇA, M. A. S.; FERREIRA, V.; ROSA, C. A.; FRANÇA, J.; ELLER, A.; REZENDE, R. S.; GONÇALVES JÚNIOR, J. F. Microbial colonization and litter decomposition in a Cerrado stream are limited by low dissolved nutrient concentration. Limnética, [s. l.], v. 34, n. 2, p. 283-292, 2015.

NAKATSUKA, H.; KARASAWA, T.; OHKURA, T.; WAGAI, R. Soil faunal effect on plant litter decomposition in mineral soil examined by two in-situ approaches: Sequential density-size fractionation and micromorphology. Geoderma, [s. l.], v. 357, p. 113910, 2020.

NAVARRO, F. K. S. P.; REZENDE, R. de S.; GONÇALVES JÚNIOR, J. F. Experimental assessment of temperature increase and presence of predator carcass changing the response of invertebrate shredders. Biota Neotropica, [s. l.], v. 13, n. 4, p. 28-33, 2013.

OLANDER, L. P.; JOHNSTON, R. J.; TALLIS, H.; KAGAN, J.; MAGUIRE, L. A.; POLASKY, S.; URBAN, D.; BOYD, J.; WAINGER, L.; PALMER, M. Benefit relevant indicators: Ecosystem services measures that link ecological and social outcomes. Ecological Indicators, [s. l.], v. 85, p. 1262-1272, 2018.

OLIVEIRA, R. E. de; ENGEL, V. L.; LOIOLA, P. P.; MORAES, L. F. D. de; VISMARA, E. S. Top 10 indicators for evaluating restoration trajectories in the Brazilian Atlantic Forest. Ecological Indicators, v. 127, 2021.

PAINII-MONTERO, V. F. Towards indicators of sustainable development for soybeans productive units_ a multicriteria perspective for the Ecuadorian coast. Ecological Indicators, [s. l.], p. 10, 2020.

PASHAEI KAMALI, F.; MEUWISSEN, M. P. M.; DE BOER, I. J. M.; VAN MIDDELAAR, C. E.; MOREIRA, A.; OUDE LANSINK, A. G. J. M. Evaluation of the environmental, economic, and social performance of soybean farming systems in southern Brazil. Journal of Cleaner Production, [s. l.], v. 142, p. 385–394, 2017.

PEARSONS, K. A.; TOOKER, J. F. Preventive insecticide use affects arthropod decomposers and decomposition in field crops. Applied Soil Ecology, [s. l.], v. 157, p. 103757, 2021.

PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, [s. l.], v. 11, p. 1633-1644, 2007.

POKHREL, S.; KINGERY, W. L.; COX, M. S.; SHANKLE, M. W.; SHANMUGAM, S. G. Impact of Cover Crops and Poultry Litter on Selected Soil Properties and Yield in Dryland Soybean Production. Agronomy, [s. l.], v. 11, n. 1, 2021.

POKHYLENKO, A. P.; DIDUR, O. O.; KULBACHKO, Y. L.; BANDURA, L. P.; CHERNYKH, S. A. Influence of saprophages (Isopoda, Diplopoda) on leaf litter decomposition under different levels of humidification and chemical loading. Biosystems Diversity, [s. l.], v. 28, n. 4, p. 384–389, 2020.

QUINTÃO, J. M. B.; REZENDE, R. S.; GONÇALVES JÚNIOR, J. F. Microbial effects in leaf breakdown in tropical reservoirs of different trophic status. Freshwater Science, [s. l.], v. 32, n. 3, p. 933–950, 2013.

R Core Team. R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. Availabe at: https://www.R-project.org/. Access in: 2022.

REZENDE, R. S.; BERNARDI, J. P.; GOMES, E. S.; MARTINS, R. T.; HAMADA, N.; GONÇALVES, J. F. Effects of Phylloicus case removal on consumption of leaf litter from two Neotropical biomes (Amazon rainforest and Cerrado savanna). Limnology, [s. l.], v. 22, n. 1, p. 35–42, 2021.

REZENDE, R. S.; CARARO, E. R.; BERNARDI, J. P.; CHIMELLO, V.; LIMA-REZENDE, C. A.; ALBENY-SIMOES, D.; DAL-MAGRO, J.; GONCALVES, J. F. Jr. Land cover affects the breakdown of Pinus elliottii needles litter by microorganisms in soil and stream systems of subtropical riparian zones. Limnologica, [s. l.], v. 90, p. 125905, 2021.

REZENDE, R. S.; CARARO, E. R.; CHIMELLO, V.; LIMA-REZENDE, C. A.; MORETTO, Y.; GONÇALVES, J. F. Jr. Small hydropower plants lead to higher litter breakdown rates in by-passed sections than in impounded reaches. Aquatic Sciences, [s. l.], v. 85, p. 26, 2023.

REZENDE, R. S.; SALES, M. A.; HURBATH, F.; ROQUE, N.; GONÇALVES, J. F.; MEDEIROS, A. O. Effect of plant richness on the dynamics of coarse particulate organic matter in a Brazilian Savannah stream. Limnologica, [s. l.], v. 63, p. 57-64, 2017.

ROMIG, D. E.; GARLYND, M. J.; HARRIS, R. F. Farmer-Based Assessment of Soil Quality: A Soil Health Scorecard. In: DORAN, J. W.; JONES, A. J. Methods for Assessing Soil Quality. [S. l.]: 1997. p. 39-60. Available at: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaspecpub49.c3.

SCHWERZ, F.; CARON, B. O.; ELLI, E. F.; STOLZLE, J. R.; MEDEIROS, S. L. P.; SGARBOSSA, J.; ROCKENBACH, A. P. Microclimatic conditions in the canopy strata and its relations with the soybean yield. Anais da Academia Brasileira de Ciências, [s. l.], v. 91, n. 3, p. e20180066, 2019.

SEKARAN, U.; SAGAR, K. L.; DENARDIN, L. G. D. O.; SINGH, J.; SINGH, N.; ABAGANDURA, G. O.; KUMAR, S.; FARMAHA, B. S.; BLY, A.; MARTINS, A. P. Responses of soil biochemical properties and microbial community structure to short and long-term no-till systems. European Journal of Soil Science, [s. l.], v. 71, n. 6, p. 1018–1033, 2020.

SENA, G.; GONÇALVES JÚNIOR, J. F.; MARTINS, R. T.; HAMADA, N.; REZENDE, R. de S. Leaf litter quality drives the feeding by invertebrate shredders in tropical streams. Ecology and Evolution, [s. l.], v. 10, p. 8563–8570, 2020.

SILVA JUNIOR, C. A. da; LEONEL-JUNIOR, A. H. S.; ROSSI, F. S.; CORREIA FILHO, W. L. F.; SANTIAGO, D. de B.; OLIVEIRA-JÚNIOR, J. F. de; TEODORO, P. E.; LIMA, M.; CAPRISTO-SILVA, G. F. Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform. Computers and Electronics in Agriculture, [s. l.], v. 169, p. 105194, 2020.

SU, Y.; GABRIELLE, B.; MAKOWSKI, D. A global dataset for crop production under conventional tillage and no tillage systems. Scientific Data, [s. l.], v. 8, n. 1, p. 33, 2021.

TAYLOR, J. M.; LIZOTTE, R. E.; TESTA, S. Breakdown rates and associated nutrient cycling vary between novel crop-derived and natural riparian detritus in aquatic agroecosystems. Hydrobiologia, [s. l.], v. 827, n. 1, p. 211–224, 2019.

TIEGS, S. D.; CLAPCOTT, J. E.; GRIFFITHS, N. A.; BOULTON, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators, [s. l.], v. 32, p. 131–139, 2013.

TIEGS, S. D.; COSTELLO, D. M.; ISKEN, M. W.; WOODWARD, G.; MCINTYRE, P. B. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, [s. l.], v. 5, n. 1, p. eaav0486, 2019.

TONIN, A. M.; LIMA, L. S.; BAMBI, P.; FIGUEIREDO, M. L.; REZENDE, R. S.; GONÇALVES, J. F. Litterfall Chemistry Is Modulated by Wet-Dry Seasonality and Leaf Phenology of Dominant Species in the Tropics. Frontiers in Forests and Global Change, [s. l.], v. 4, p. 666116, 2021.

TORRES, P. A.; ABRIL, A. B.; BUCHER, E. H. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology and Biochemistry, [s. l.], v. 37, n. 1, p. 49–54, 2005.

XIAO, W.; CHEN, H. Y. H.; KUMAR, P.; CHEN, C.; GUAN, Q. Multiple interactions between tree composition and diversity and microbial diversity underly litter decomposition. Geoderma, [s. l.], v. 341, p. 161–171, 2019.

YARWOOD, S. A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiology Ecology, [s. l.], v. 94, n. 11, 2018. Available at: https://academic.oup.com/femsec/article/doi/10.1093/femsec/fiy175/5087730. Access in: 16 June 2021.

ZAPATA, D.; RAJAN, N.; MOWRER, J.; CASEY, K.; SCHNELL, R.; HONS, F. Long-term tillage effect on with-in season variations in soil conditions and respiration from dryland winter wheat and soybean cropping systems. Scientific Reports, [s. l.], v. 11, n. 1, p. 2344, 2021.

Downloads

Publicado

28-06-2023

Como Citar

Rezende, R. de S., Cavallet, B. V., Polesso, A. M., Silva, E. R., & Baretta, C. R. D. M. (2023). Efeito do tempo e áreas de uso agrícola no processo de decomposição de celulose. Ciência Florestal, 33(2), e70837. https://doi.org/10.5902/1980509870837