Impact of COVID-19 on variables of cardiac autonomic modulation and functional capacity in elderly women
DOI:
https://doi.org/10.5902/2236583487859Keywords:
Elderly, Covid-19, Functional capacity, Autonomic nervous systemAbstract
Aim: To analyze the impact of SARS-COV-19 on cardiac autonomic modulation variables and functional capacity in elderly women. Methods: 44 elderly women between 61 and 81 years old were included. The elderly were grouped into two groups: Group with COVID-19 and Group without COVID-19. Anamnesis, blood pressure measurement, body composition, electrocardiogram at rest for 10 minutes for analysis of heart rate variability (HRV), stand up and sit test (TLS30s), and time up and go (TUG) were performed. Results: In cardiac autonomic modulation, we observed a reduction in the SD1, SD2 and Alpha 1 indices in the COVID-19 group and an increase in the Alpha 2 index. Functional tests showed no significant difference. Only the fat percentage (PG%) showed a significant difference between the groups, the COVID-19 group showed a higher (PG%) compared to the group without COVID-19. All groups were considered overweight. A negative and significant correlation was identified between PG (%) and systolic blood pressure (r=- 0.428, p=0.003). Conclusion: SARS-COV-19 seems to affect variables of cardiac autonomic modulation, such as the decrease in nervous activity parasympathetic. In addition, the reduction in the Alpha 1 index is related to a higher risk of cardiac death and sudden cardiac death. Elderly women who had COVID 19 were not affected in terms of functional capacity.
Downloads
References
Araujo B, Chiamulera GB, Saretto CMFB. O impacto da pandemia COVID-19 sobre a fragilidade física e a capacidade funcional de idosos: The impact of the COVID-19 pandemic on the physical fragility and functional capacity of the elderly. Revista FisiSenectus. 2021; 9(1):16-30.
Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports medicine. 2003; 33:889-919.
Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa ADM, et al. Diretrizes brasileiras de hipertensão arterial–2020. Arquivos brasileiros de cardiologia. 2021; 116:516-658.
Cai Q, Chen F, Wang T, Luo F, Liu X, Wu Q, et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes care. 2020; 43(7):1392-1398.
Carizzio GM, Oliveira-Silva I, Castro DLS, Mota MR. Relação entre VFC, atividade física, depressão e gordura corporal em idosos não institucionalizados. Revista Movimenta. 2019; 12(1):211-219.
Carvalho Filho ET, Papaléo Netto M. Geriatria: fundamentos, clínica e terapêutica. In: Geriatria: fundamentos, clínica e terapêutica. 2005. p. 788-788.
Cortés-Telles A, López-Romero S, Figueroa-Hurtado E, Pou-Aguillar YN, Wong AW, Milne KM, et al. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respiratory physiology & neurobiology. 2021; 288:103644.
De Angelis K, Santos MSB, Irigoyen MC. Sistema nervoso autônomo e doença cardiovascular. Revista da Sociedade de Cardiologia do Rio Grande do Sul. 2004; 3:1-7.
Hofman A, Limpens MAM, Crom TOE, Ikram MA, Luik AI, Voortman T. Trajectories and determinants of physical activity during covid-19 pandemic: A population-based study of middle-aged and elderly individuals in the netherlands. Nutrients. 2021; 13(11):3832.
Huikuri HV, Mäkikallio TH, Peng CK, Golberger AL, Hintze U, Moller M. Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000;101(1):47-53.
Iyengar N, Peng CK, Morin R, Goldeberger AL, Lipsitz LA. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am J Physiol. 1996;271:R1078-84.
Kaur D, Tiwana H, Stino A, Sandroni P. Autonomic neuropathies. Muscle & Nerve. 2021;63(1):10-21.
Lopes FL, Pereira FM, Reboredo MM, Castro TM, Vianna JM, Novo Jr JM, et al. Redução da variabilidade da freqüência cardíaca em indivíduos de meia-idade e o efeito do treinamento de força. Brazilian Journal of Physical Therapy. 2007;11:113-119.
Makikallio TH, Seppänen T, Airaksinen KE, Koistinen J, Tulppo MP, Peng CK, et al. Dynamic analysis of heart rate may predict subsequent ventricular tachycardia after myocardial infarction. Am J Cardiol. 1997;80: 779.
Mol BA, Strous MTA, Osch FHM, Jeroen Vogelaar F, Barten DG, Farchi M, et al. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PloS one. 2021;16(10):e0258841.
Neidich SD, Green WD, Rebeles J, Karlsson EA, Scholtz-Cherry S, Noah TL, et al. Increased risk of influenza among vaccinated adults who are obese. International journal of obesity. 2017, 41(9):1324-1330.
Ochani, R, Asad A, Yasmin F, Shaikh S, Khalid H, Batra S, et al. COVID-19 pandemic: from origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Le Infezioni in Medicina. 2021;29(1):20-36.
Organização Mundial de Saúde. Obesidade: prevenindo e gerenciando a epidemia global. Relatório de uma Consulação da OMS. Genebra: Organização Mundial da Saúde; 1998 (Série de Relatórios Técnicos, No. 894).
Paschoal MA, Volanti VM, Pires CS, Fernandes FC. Variabilidade da freqüência cardíaca em diferentes faixas etárias. Brazilian journal of physical therapy. 2006;10:413-419.
Rawlins MD, Culyer AJ. National Institute for Clinical Excellence and its value judgments. BMJ. 20024;329(7459):224-227.
Posser SR, Leguisamo CA, Oliveira B, Oliveira LZ, Bavaresco SS. Neuropatia diabética: um relato de caso. EFDeportes. com. Revista Digital. 2012;175.
Raj SR, Arnold AC, Barboi A, Claydon VE, Limberg JK, Lucci VEM, et al. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clinical Autonomic Research. 2021;31(3): 365-368.
Rikli RE, Jones CJ. Senior fitness test manual. Human kinetics, 2013.
Satake S, Kinoshita K, Arai H. More active participation in voluntary exercise of older users of information and communicative technology even during the COVID-19 pandemic, independent of frailty status. The journal of nutrition, health & aging. 2021;25: 516-519.
Shaffer F, Mccraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1–19.
Siri, W. E. Body composition from fluid spaces and density: analysis of methods. 1956.
Stival C, Lugo A, Bosetti C, Amerio A, Serafini G, d’Oro LC, et al. COVID-19 confinement impact on weight gain and physical activity in the older adult population: Data from the LOST in Lombardia study. Clin Nutr ESPEN. 2022;48:329-335.
Swai J, Hu Z, Zhao X, Rugambwa T, Ming G. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; a systematic review and meta-analysis. BMC Cardiovascular Disorders. 2019;19:1-12.
Tasaki H, Serita T, Irita A, Hano O, Iliev I, Ueyama C, et al. A 15-year longitudinal follow-up study of heart rate and heart rate variability in healthy elderly persons. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2000;55(12): M744-M749.
Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biological psychology. 2007;74(2): 224-242.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ellian Robert Vale Santos, Leonardo Hesley Ferraz Durans, Sarah Raquel Dutra Macedo, Helen Nara da Silva e Silva, Christian Emmanuel Torres Cabido, Augusto Ribeiro de Oliveira, Marcos Antonio do Nascimento, Cristiano Teixeira Mostarda

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A Declaração de Direito Autoral e os itens a serem observados podem ser visualizados no seguinte link: http://cascavel.ufsm.br/revistas/ojs-2.2.2/index.php/seculoxxi/information/sampleCopyrightWording

