Biodegradação e biotransformação de hidrocarbonetos de petróleo: progresso, perspectivas e desafios

Autores

DOI:

https://doi.org/10.5902/2236117069288

Palavras-chave:

Hidrocarbonetos de petróleo, Impactos ecológicos, Biorremediação

Resumo

O petróleo é considerado a principal fonte de energia, sendo essencial para a realização de diversas atividades industriais. No entanto, é prejudicial ao meio ambiente, pois além da liberação de gases poluentes durante a combustão, sua exploração envolve riscos de contaminação da água, por meio de vazamentos. Poluentes de hidrocarbonetos de petróleo fazem parte dos compostos recalcitrantes e sua eliminação do meio ambiente causa enormes impactos ecológicos. A restauração desses ambientes não é um desafio trivial, pois a degradação natural, sem envolvimento antropogênico, depende da natureza, composição, propriedades físicas e químicas desses compostos. Assim, a biorremediação surge como alternativa no processo de biodegradação através da adição de microrganismos, nutrientes ou outras substâncias que causam e aceleram a descontaminação. As vantagens desses métodos envolvem eficiência e baixo custo, quando comparados a outras tecnologias. Este trabalho reúne conhecimentos sobre as perspectivas de aplicação de sistemas de biorremediação na recuperação de ambientes poluídos por hidrocarbonetos de petróleo, discutindo avanços, perspectivas e desafios.

Downloads

Não há dados estatísticos.

Biografia do Autor

Raul José Alves Felisardo, Universidade Tiradentes, Aracaju, SE

Formado em Engenharia de Petróleo pela Universidade Tiradentes com período sanduíche na Universidad de Sevilla na Espanha. Atualmente é pós-graduando em Gestão Ambiental pela Faculdade Única e doutorando em Engenharia de Processos pela universidade Tiradentes, no qual realiza pesquisas voltadas ao desenvolvimento de um Processo híbrido de tratamento de efluente contaminado com poluentes orgânicos no laboratório de Tratamento de Resíduos e Efluentes (LTRE) . É revisor da Revista Brasileira de meio Ambiente e da Revista Brasileira de Engenharia e Sustentabilidade.

Amanda de Azevedo Gonçalves, Universidade Tiradentes, Aracaju, SE

Doutora em Engenharia de Processos na UNIT. Mestre em Recursos Hídricos na UFS. Especialista em Engenharia de Saneamento Básico e Ambiental. Especialista em Educação Ambiental e Graduada em Engenharia Ambiental. 

Referências

ADELAJA, O.; KESHAVARZ, T.; KYAZZE, G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J. Hazard Mater., v. 283, p.211-217, 2015. https://doi.org/10.1016/j.jhazmat.2014.08.066

ADIPAH, S. Introduction of Petroleum Hydrocarbons Contaminants and its Human Effects. Journal of Environ. Sci. and Pub. Health, v. 3, p. 001-009, 2019. https://doi.org/10.26502/jesph.96120043.

ANDRADE, J. A., AUGUSTO, F., JARDIM, I.C.S.F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética Química, v. 35, n. 3, p. 17-43, 2010. http://www.scielo.br/scielo.php?

ASTDR. An Overview of Total Petroleum Hydrocarbons, in: Toxicological Profile for Total Petroleum Hydrocarbons. U.S. Depart. of Health and Human Serv., Public Health Service Atlanta, GA, USA. 2011. Available in: https://www.atsdr.cdc.gov/toxprofiles/tp123-c2.pdf. Accessed December 10, 2021.

ATLAS, R.M. Effects of Temperature and Crude Oil Composition on Petroleum Biodegradation. Appl. Environ. Microbiol., v. 30, p. 396–403, 1975. https://doi.org/10.1128/am.30.3.396-403.1975

B. CHANG, L. SHIUNG, S. YUAN. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, v 48, p. 717-724, 2002. https://doi.org/10.1016/S0045-6535(02)00151-0

BACHMANN, R.T., JOHNSON, A. C., EDYVEAN, R. G. Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation, v. 86, p. 225–237, 2014. https://doi.org/10.1016/j.ibiod.2013.09.011

BANIASADI M., MOUSAVI S.M. (2018) A Comprehensive Review on the Bioremediation of Oil Spills. In: Kumar V., Kumar M., Prasad R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_10

BRAHMACHARIMAYUM, B., MOHANTY, M., GHOSH, P. Theoretical and practical aspects of biological sulfate reduction: a review. Global NEST Journal, v. 21, p. 222-244, 2019.

BRUSSEAU, M. L.; MATTHIAS, A. D.; COMRIE, A. C.; MUSIL, S. A. Atmospheric Pollution. Environ. and Poll. Sci., Academic Press. 3ª Ed., p. 293-309, 2019. eBook ISBN: 9780128147207.

CHENG, L., HE, Q., DING, C., DAI, L-R., LI, Q. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium FEMS Microbiology. Ecology, v. 85, p. 568–577, 2013. https://doi.org/10.1111/1574-6941.12141

CHENG, L., Shi, S., Li, Q., Chen, J., Zhang, H., Lu, Y. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions. PLOS ONE, v. 9, n. e113253, 2014. https://doi.org/10.1371/journal.pone.0113253

CHENG, L., SHI, S., LI, Q., CHEN, J., ZHANG, H., LU, Y. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions. PloS One, v. 9, 2014. https://doi.org/10.1371/journal.pone.0113253

CLAR, E. Polycyclic Hydrocarbons, Academic Press, 1964. ISBN: 978-3-662-01665-7.

CNN. An oil spill off the California coast destroyed a wildlife habitat and caused dead birds and fish to wash up on Huntington Beach, officials say. CNN, 2021. Disponível em: https://edition.cnn.com/2021/10/03/us/california-oil-spill/index.html. Acesso em: 12 de out. de 2021.

CRAVO-LAUREAU, C., MATHERON, R., CAYOL, J.-L., JOULIAN, C., HIRSCHLER-REA, A. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane-and n-alkene-degrading, sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol., v. 54, p. 77-83, 2004. https://doi.org/10.1099/ijs.0.02717-0

CURRIER, H. B.; PEOPLES, S. A. Phytotoxicity of hydrocarbons. Hilgardia, v. 23, p. 155-173, 1954. https://doi.org/10.3733/hilg.v23n06p155.

DAI, X., LV, J., WEI, W., GUO, S. Bioremediation of heavy oil contaminated intertidal zones by immobilized bacterial consortium. Process. Saf. Environ. Prot., v. 158, p. 70-78, 2022. https://doi.org/10.1016/j.psep.2021.11.038.

DEFRA. Department for Environment, Food and Rural Affairs. Soil Strategy for England supporting evidence paper (2009). Available in: https://static1.squarespace.com/static/58cff61c414fb598d9e947ca/t/5bb22be3e5e5f0c48209213e/1538403309178/Soil+Strategy+2009.pdf. Accessed October 12, 2021.

DOHERTY, V. F. AND OTITOLOJU, A. A. Monitoring of soil and groundwater contamination following a pipeline explosion and petroleum product spillage in Ijegun, Lagos Nigeria. Environ. Monit. Assess. v. 185, p. 4159–4170, 2013. https://doi.org/10.1007/s10661-012-2858-8.

EL-NAAS, M.H., ACIO, J.A., TELIB, A.E.E. Aerobic biodegradation of BTEX: Progresses and Prospects. J. Environ. Chem. Eng., v. 2, p. 1104-1122, 2014. https://doi.org/10.1016/j.jece.2014.04.009.

FIRMINO, P. I. M.; FARIAS, R. S.; BUARQUE, P. M. C.; RODRÍGUES, E.; LOPES, A. C.; SANTOS, A. B. DOS. Engineering and microbiological aspects of BTEX removal in bioreactors under sulfat-reducing conditions. Chem. Engin. J., v. 260, p. 503-512, 2015. https://doi.org/10.1016/j.cej.2014.08.111.

GENNADIEV, A. N.; PIKOVSKII, Y. I; TSIBART, A. S.; SMIRNOVA, M. A. Hydrocarbons in Soils: Origin, Composition and Behavior (Review). Soil Chem, v. 48, p. 1195-1209, 2015. https://doi.org/10.1134/S1064229315100026.

GHORBANIAN, M. MOUSSAVI, G. FARZADKIA, M. Investigating the performance of an up-flow anoxic fixed-bed bioreactor and a sequencing anoxic batch reactor for the biodegradation of hydrocarbons in petroleum-contaminated saline water. Int Biodeterior. Biodegrad., v. 90, p. 106-114, 2014. https://doi.org/10.1016/j.ibiod.2014.02.009.

GHORBANNEZHAD, H., MOGHIMI, H., DASTGHEIB, S.M.M. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. Ecotoxicol. Environ. Saf., v. 164, p. 434-439, 2018. https://doi.org/10.1016/j.ecoenv.2018.08.046.

GIEG, L.M., DAVIDOVA, I.A., DUNCAN, K.E., SUFLITA, J.M. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ. Microbiol., v. 12, p. 3074–3086, 2010. https://doi.org/10.1111/j.1462-2920.2010.02282.x

HADIBARATA, T., TACHIBANA, S., ITOH, K. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J. Hazard. Mater., v. 164, p. 911-917, 2009. https://doi.org/10.1016/j.jhazmat.2008.08.081.

HAIDER, F. U.; EJAZ, M.; CHEEMA, S. A.; KHAN, M. I.; ZHAO, B.; LIQUN, C.; SALIM, M. A.; NAVEED, M.; KHAN, N.; NÚÑEZ-DELGADO, A.; MUSTAFA, A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res., v. 197, p. 111031, 2021. https://doi.org/10.1016/j.envres.2021.111031.

HARITASH, A.K., KAUSHIK, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater., v. 169, p. 1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137

HARITASH, A.K., KAUSHIK, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater., v. 169, p.1–15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137.

HARITASH, A.K.; KAUSHIK, C.P. Biodegradation aspects of pollyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazard. Mat., v.169, p.1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137.

HENTATI, O., LACHHAB, R., AYADI, M., KSIBI, M. Toxicity assessment for petroleumcontaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. v.185, p.2989-2998. 2013. https://doi.org/10.1007/s10661-012-2766-y.

IHUNWO, O. C.; ONYEMA, M. O.; WEKPE, V. O.; OKOCHA, C.; SHAHABINIA, A. R.; EMMANUEL, L.; OKWE, V. N.; LAWSON, C. B.; MNOM, P. C.; DIBOFORI-ORJI, A. N.; BONNAIL, E. Ecological and human health risk assessment of total petroleum hydrocarbons in surface water and sediment from Woji Creek in the Niger Delta Estuary of Rivers State, Nigeria. Heliyon, v. 7, 2021. https://doi.org/10.1016/j.heliyon.2021.e07689.

JIANG, W., CHEN, L., BATCHU, S. R., GARDINALI, P. R., JASA, L., MARSALEK, B., ZBORIL, R., DIONYSIOS, D. D., O’SHEA, K. E., SHARMA, V. K. Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ. Sci. Technol, v. 48, p. 12164–12172, 2014. https://doi.org/10.1021/es5030355

KHAN, S., RAHMAN, A.M., PAYNE, J.F., RAHIMTULA, A.D. Mechanisms of petroleum hydrocarbon toxicity: Studies on the response of rat liver mitochondria to Prudhoe Bay crude oil and its aliphatic, aromatic and heterocyclic fractions. Toxicology, v. 42, p.131-142, 1986. https://doi.org/10.1016/0300-483X(86)90004-1

KUPPUSAMY, S.; MADDELA, N. R.; MEGHARAJ, M.; VENKATESWARLU, K. An Overview of Total Petroleum Hydrocarbons. In: Total Petroleum Hydrocarbons. Springer nature Switzerland AG, p. 1-27 ,2020. https://doi.org/10.1007/978-3-030-24035-6_1.

LEAHY, J.G., COLWELL, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. V. 54, p. 305-315, 1990. PMID: 2215423

LI, M., SU, Y., CHEN, Y., WAN, R., ZHENG, X., LIU, K. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption. Appl. Microbiol. Biotechnol., v. 100, p. 5607-5618, 2016. https://doi.org/10.1007/s00253-016-7383-1

LIU, G.-H., YE, Z., TONG, K., ZHANG, Y-H. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochemical Engineering Journal, v. 72, p. 48-53, 2013. https://doi.org/10.1016/j.bej.2012.12.017.

MARCHAND, H., ST-ARNAUD, M., HOGLAND, W., BELL, T.H., HIJRI, M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil, Int Biodeterior. Biodegrad., v. 16, p. 48-57, 2017. https://doi.org/10.1016/j.ibiod.2016.09.030.

MARTINS, Bianca. Biorremediação, Biotecnologia, Blog do Profissão Biotec (ISSN 2675-6013), Ciência, Sustentabilidade, v. 4 (2019). Available in: https://profissaobiotec.com.br/biorremediacao-solucao-sustentavel/. Accessed on: november 20 2021.

MATTURRO, B., VIGGI, C.C., AULENTA, F., ROSSETTI, S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front. Microbiol., v. 8, p. 952- 1005, 2017. https://doi.org/10.3389/fmicb.2017.00952

MOHAMAD SHAHIMIN, M.F., FOGHT, J.M., SIDDIQUE, T. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Sci. Total Environ., v. 553, p. 250 – 257, 2016. https://doi.org/10.1016/j.scitotenv.2016.02.061.

OSSAI, I. C.; AHMED, A.; HASSAN, A.; HAMID, F. S., I. C.; AHMED, A.; HASSAN, A.; HAMID, F. S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Journal Pre-proof, p. 1-81, 2020. https://doi.org/10.1016/j.eti.2019.100526.

PATNAIK, P. A Comprehensive Guide to the Properties of Hazardous Chemical Substances, 2nd ed., John Wiley & Sons Publishers, 1999. ISBN: 978-0-471-71458-3

PEAKALL, D.B., HALLETT, D.J., BEND, J.R., FOUREMAN, G.L., MILLER, D.S. Toxicity of Prudhoe Bay crude oil and its aromatic fractions to nestling herring gulls. Environ. Res., v. 27, Pages 206-215, 1982. https://doi.org/10.1016/0013-9351(82)90071-8.

PINEDO, J.; IBÁÑEZ, R.; PRIMO, O.; GOMEZ, P.; IRABIEN, A. Preliminary assessment of soil contamination by hydrocarbon storage activities: main site investiga tion selection. J. Geochem. Explor., v.147, p.283–290 (2014). https://doi.org/10.1016/j.gexplo.2014.03.016.

PRINCE, R.C. Petroleum Spill Bioremediation in Marine Environments. Crit. Rev. Microbiol., v.19, p. 217-242, 1996. https://doi.org/10.3109/10408419309113530

PROVIDENTI, M.A., LEE, H., TREVORS, J.T. Selected factors limiting the microbial degradation of recalcitrant compounds. J. Ind. Microbiol. Biotechnol., v. 12, p. 379-395, 1993. https://doi.org/10.1007/BF01569669

ROSTAMI, S.; ABESI, O.; AMINI-RAD, H. Assessment of the toxicity, origin, biodegradation and weathering extent of petroleum hydrocarbons in surface sediments of Pars Special Economic Energy Zone, Persian Gulf Assessment of the toxicity, origin, biodegradation and weathering extent of petroleum hydrocarbons in surface sediments of Pars Special Economic Energy Zone, Persian Gulf. Marine Poll. Bull., v.138, p. 302-311, 2019. https://doi.org/10.1016/j.marpolbul.2018.11.034

SAMMARCO, P.W., KOLIAN, S.R., WARBY, R.A.F., BOULDIN, J.L., SUBRA, W.A., PORTER, S.A. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Arch. Toxicol. v.90, p.829–837, 2016. https://doi.org/10.1007/s00204-015-1526-5.

SHAHIDI, D.; ROY, RENÉ; AZZOUZ, A. Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts. Applied Cat. B: Environ, v. 174-175, p. 277-292, 2015. https://doi.org/10.1016/j.apcatb.2015.02.042

SILVA, I.S., DOS SANTOS, E.C., MENEZES, C.R., FARIA, A.F., FRANCISCON, E., GROSSMAN, M., DURRANT, L.R. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour. Technol., v. 100, p. 4669-4675, 2009. https://doi.org/10.1016/j.biortech.2009.03.079.

SINGH, O.; VISHNU, M.C.; SHARMA, K.K.; BORTHAKUR, A.; SRIVASTAVA, P.; PAL, D. B.; TIWARY, D.; MISHRA, P. K. Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration. Journal of Water Process Eng., v. 12, p. 20-31, 2016a. https://doi.org/10.1016/j.jwpe.2016.04.007.

SINGH, P.; BORTHAKUR, A. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Clea. Prod., v. 196, p. 1669-1680, 2018. https://doi.org/10.1016/j.jclepro.2018.05.289.

SINGH, P.; OJHA, A.; BORTHAKUR, A.; SINGH, R.; LAHIURY, D.; TIWARY, D.; MISHRA, P. K. Emerging trends in photodegradation of petrochemical wastes: a review. Environ. Sci. and Poll. Control, v.23, p. 22340-22364, 2016b. https://doi.org/10.1007/s11356-016-7373-y.

SPEICHT, J. G. Sources and Types of Organic Pollutants. Environ. Org. Chem. for Engineers, p. 153-201, 2017. https://doi.org/10.1016/B978-0-12-804492-6.00004-6.

STASIK, S.; WICK, L. Y.; WENDT-POTTHOFF, K. Anaerobic BTEX degradation in oil sands tailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere, v. 138, p. 133-139, 2015. https://doi.org/10.1016/j.chemosphere.2015.05.068.

SUPERBAC. O que é biorremediação de solo e por que é importante fazer? 2018. Available in: http://www.superbac.com.br/o-que-e-biorremediacao-de-solo-e-por-que-e-importante-fazer/. Accessed on: november 19 2021.

THAPA, B.; KC, A. K.; GHIMIRE, A. A review on bioremediation of petroleum hydrocarbon contaminants in soil. J. of Sci., Engin. and Techn., v.8, 2012. https://doi.org/10.3126/kuset.v8i1.6056.

TOLOSA, I.; MORA, STEPHEN DE; SHEIKHOLESLAMI, M. R.; VILLENEUVE, JEAN-PIERRE; BARTOCCI, J.; CATTINI, C. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Poll. Bull., v. 48, 2004. https://doi.org/10.1016/S0025-326X(03)00255-8.

TRUSKEWYCZ, A.; GUNDRY, T. D.; KHUDUR, L. S.; KOLOBARIC, A.; TAHA, M.; ABURTO-MEDINA, A.; BALL, A. S.; SHAHSAVARI, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems – Fate and Microbial Responses. Molecules, v. 24, p. 1-20, 2019. https://doi.org/10.3390/molecules24183400.

UDDIN, S.; FOWLER, S. W.; SAEED, T.; JUPP, B.; FAIZUDDIN, M. Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review. Marine Poll. Bull., v. 173, p. 112913, 2021. https://doi.org/10.1016/j.marpolbul.2021.112913.

USEPA. United States Environmental Protection Agency. Developing innovative solutions for oil spill cleanup, 2007. Disponível em: https://www.epa.gov/. Acessed on: oct. 24 2021.

USEPA. United States Environmental Protection Agency. Understanding oil spills and oil spill response, 1999. Available in: https://books.google.com.br/books?hl=pt-BR&lr=&id=px5SAAAAMAAJ&oi=fnd&pg=PA1&dq=Understanding+Oil+Spills+And+Oil+Spill+Response&ots=cJ6TuRjoQr&sig=MTbH1O5_bfwmMjnr9Ur2ztbMOAw#v=onepage&q=Understanding%20Oil%20Spills%20And%20Oil%20Spill%20Response&f=false. Accessed October 12, 2021

VALENTIN, L., NOUSIAINEN, A., MIKKONEN, A. Emerging organic contaminants in sludges: analysis, fate and biological treatment. Hdb. Environ. Chem., v. 24, p.1-30, 2013. https:doi:10.1007/978-3-642-35609-4.

VARJANI, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol., v. 223, p. 277-286, 2017. https://doi.org/10.1016/j.biortech.2016.10.037

WANG, L.-Y., GAO, C.-X., MBADINGA, S.M., ZHOU, L., LIU, J.-F. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int. Biodeterior. Biodegrad, v. 65, p. 444–450, 2011. https://doi.org/10.1016/j.ibiod.2010.12.010

WANG, S., NOMURA, N., NAKAJIMA, T., UCHIYAMA, H. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J. Biosci. Bioeng., v. 113, p. 624-630, 2012. https://doi.org/10.1016/j.jbiosc.2012.01.005

WANG, J.; ZHONGZHI, Z.; YOUMING, S.; WEI, H.; FENG, H.; HONGGUANG, S. Phytoremediation of petroleum polluted soil. Petroleum Sci., v. 5, P. 167-171, 2008. https://doi10.1007/s12182-008-0026-0

WARTELL, B., BOUFADEL, M., RODRIGUEZ-FREIRE, L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. Int. Biodeterior. Biodegrad., v. 157, 2021. https://doi.org/10.1016/j.ibiod.2020.105156

XUE, J., YU, Y., BAI, Y., WANG, L., WU, Y. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review. Curr. Microbiol, v. 71, p. 220–228, 2015. https://doi.org/10.1007/s00284-015-0825-7

YAKUBU, M.B. Biological approach to oil spills remediation in the soil. African Journal of Biotechnology, v. 6, p. 2735-2739, 2007. 10.5897 / AJB2007.000-2437

YANTO, D.H.Y., TACHIBANA, S. Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeterior. Biodegrad., v. 85, p. 438-450, 2013. https://doi.org/10.1016/j.ibiod.2013.09.008.

YANTO, D.H.Y., TACHIBANA, S. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J. Hazard. Mater., v. 278, p. 454-463, 2014. https://doi.org/10.1016/j.jhazmat.2014.06.039.

ZHANG, X., KONG, D., LIU, X., XIE, H., LOU, X., ZENG, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere, v. 273, n. 129666, 2021. https://doi.org/10.1016/j.chemosphere.2021.129666.

Downloads

Publicado

2023-01-31

Como Citar

Felisardo, R. J. A., & Gonçalves, A. de A. (2023). Biodegradação e biotransformação de hidrocarbonetos de petróleo: progresso, perspectivas e desafios. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 27, e1. https://doi.org/10.5902/2236117069288

Edição

Seção

TECNOLOGIA AMBIENTAL