Biodegradación y Biotransformación de Hidrocarburos de Petróleo: Avances, Perspectivas y Desafíos

Autores/as

DOI:

https://doi.org/10.5902/2236117069288

Palabras clave:

hidrocarburos de petróleo, impactos ecológicos, biorremediación

Resumen

El petróleo es considerado la principal fuente de energía, siendo fundamental para la realización de diversas actividades industriales. Sin embargo, es perjudicial para el medio ambiente, ya que además de la liberación de gases contaminantes durante la combustión, su explotación implica riesgos de contaminación del agua, a través de fugas. Los hidrocarburos contaminantes del petróleo forman parte de los compuestos recalcitrantes y su eliminación del medio ambiente provoca enormes impactos ecológicos. La restauración de estos ambientes no es un reto baladí, ya que la degradación natural, sin intervención antrópica, depende de la naturaleza, composición, propiedades físicas y químicas de estos compuestos. Así, la biorremediación aparece como alternativa en el proceso de biodegradación mediante la adición de microorganismos, nutrientes u otras sustancias que provocan y aceleran la descontaminación. Las ventajas de estos métodos implican eficiencia y bajo costo, en comparación con otras tecnologías. Este trabajo reúne conocimientos sobre las perspectivas de aplicación de los sistemas de biorremediación en la recuperación de ambientes contaminados por hidrocarburos de petróleo, discutiendo avances, perspectivas y desafíos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Raul José Alves Felisardo, Universidade Tiradentes, Aracaju, SE

Doutorando em Engenharia de Processo, Formado em Engenharia de Petróleo pela Universidade Tiradentes - UNIT (2018) com período sanduíche na Universidad de Sevilla na Espanha (2017). Pós-graduado em Gestão Ambiental pela Faculdade Única. 

Amanda de Azevedo Gonçalves, Universidade Tiradentes, Aracaju, SE

Doutora em Engenharia de Processos na UNIT. Mestre em Recursos Hídricos na UFS. Especialista em Engenharia de Saneamento Básico e Ambiental. Especialista em Educação Ambiental e Graduada em Engenharia Ambiental. 

Citas

ADELAJA, O.; KESHAVARZ, T.; KYAZZE, G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J. Hazard Mater., v. 283, p.211-217, 2015. https://doi.org/10.1016/j.jhazmat.2014.08.066 DOI: https://doi.org/10.1016/j.jhazmat.2014.08.066

ADIPAH, S. Introduction of Petroleum Hydrocarbons Contaminants and its Human Effects. Journal of Environ. Sci. and Pub. Health, v. 3, p. 001-009, 2019. https://doi.org/10.26502/jesph.96120043. DOI: https://doi.org/10.26502/jesph.96120043

ANDRADE, J. A., AUGUSTO, F., JARDIM, I.C.S.F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética Química, v. 35, n. 3, p. 17-43, 2010. http://www.scielo.br/scielo.php? DOI: https://doi.org/10.1590/S0100-46702010000300002

ASTDR. An Overview of Total Petroleum Hydrocarbons, in: Toxicological Profile for Total Petroleum Hydrocarbons. U.S. Depart. of Health and Human Serv., Public Health Service Atlanta, GA, USA. 2011. Available in: https://www.atsdr.cdc.gov/toxprofiles/tp123-c2.pdf. Accessed December 10, 2021.

ATLAS, R.M. Effects of Temperature and Crude Oil Composition on Petroleum Biodegradation. Appl. Environ. Microbiol., v. 30, p. 396–403, 1975. https://doi.org/10.1128/am.30.3.396-403.1975 DOI: https://doi.org/10.1128/am.30.3.396-403.1975

B. CHANG, L. SHIUNG, S. YUAN. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, v 48, p. 717-724, 2002. https://doi.org/10.1016/S0045-6535(02)00151-0 DOI: https://doi.org/10.1016/S0045-6535(02)00151-0

BACHMANN, R.T., JOHNSON, A. C., EDYVEAN, R. G. Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation, v. 86, p. 225–237, 2014. https://doi.org/10.1016/j.ibiod.2013.09.011 DOI: https://doi.org/10.1016/j.ibiod.2013.09.011

BANIASADI M., MOUSAVI S.M. (2018) A Comprehensive Review on the Bioremediation of Oil Spills. In: Kumar V., Kumar M., Prasad R. (eds) Microbial Action on Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-13-1840-5_10 DOI: https://doi.org/10.1007/978-981-13-1840-5_10

BRAHMACHARIMAYUM, B., MOHANTY, M., GHOSH, P. Theoretical and practical aspects of biological sulfate reduction: a review. Global NEST Journal, v. 21, p. 222-244, 2019.

BRUSSEAU, M. L.; MATTHIAS, A. D.; COMRIE, A. C.; MUSIL, S. A. Atmospheric Pollution. Environ. and Poll. Sci., Academic Press. 3ª Ed., p. 293-309, 2019. eBook ISBN: 9780128147207. DOI: https://doi.org/10.1016/B978-0-12-814719-1.00017-3

CHENG, L., HE, Q., DING, C., DAI, L-R., LI, Q. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium FEMS Microbiology. Ecology, v. 85, p. 568–577, 2013. https://doi.org/10.1111/1574-6941.12141 DOI: https://doi.org/10.1111/1574-6941.12141

CHENG, L., Shi, S., Li, Q., Chen, J., Zhang, H., Lu, Y. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions. PLOS ONE, v. 9, n. e113253, 2014. https://doi.org/10.1371/journal.pone.0113253

CHENG, L., SHI, S., LI, Q., CHEN, J., ZHANG, H., LU, Y. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions. PloS One, v. 9, 2014. https://doi.org/10.1371/journal.pone.0113253 DOI: https://doi.org/10.1371/journal.pone.0113253

CLAR, E. Polycyclic Hydrocarbons, Academic Press, 1964. ISBN: 978-3-662-01665-7. DOI: https://doi.org/10.1007/978-3-662-01665-7_1

CNN. An oil spill off the California coast destroyed a wildlife habitat and caused dead birds and fish to wash up on Huntington Beach, officials say. CNN, 2021. Disponível em: https://edition.cnn.com/2021/10/03/us/california-oil-spill/index.html. Acesso em: 12 de out. de 2021.

CRAVO-LAUREAU, C., MATHERON, R., CAYOL, J.-L., JOULIAN, C., HIRSCHLER-REA, A. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane-and n-alkene-degrading, sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol., v. 54, p. 77-83, 2004. https://doi.org/10.1099/ijs.0.02717-0 DOI: https://doi.org/10.1099/ijs.0.02717-0

CURRIER, H. B.; PEOPLES, S. A. Phytotoxicity of hydrocarbons. Hilgardia, v. 23, p. 155-173, 1954. https://doi.org/10.3733/hilg.v23n06p155. DOI: https://doi.org/10.3733/hilg.v23n06p155

DAI, X., LV, J., WEI, W., GUO, S. Bioremediation of heavy oil contaminated intertidal zones by immobilized bacterial consortium. Process. Saf. Environ. Prot., v. 158, p. 70-78, 2022. https://doi.org/10.1016/j.psep.2021.11.038. DOI: https://doi.org/10.1016/j.psep.2021.11.038

DEFRA. Department for Environment, Food and Rural Affairs. Soil Strategy for England supporting evidence paper (2009). Available in: https://static1.squarespace.com/static/58cff61c414fb598d9e947ca/t/5bb22be3e5e5f0c48209213e/1538403309178/Soil+Strategy+2009.pdf. Accessed October 12, 2021.

DOHERTY, V. F. AND OTITOLOJU, A. A. Monitoring of soil and groundwater contamination following a pipeline explosion and petroleum product spillage in Ijegun, Lagos Nigeria. Environ. Monit. Assess. v. 185, p. 4159–4170, 2013. https://doi.org/10.1007/s10661-012-2858-8. DOI: https://doi.org/10.1007/s10661-012-2858-8

EL-NAAS, M.H., ACIO, J.A., TELIB, A.E.E. Aerobic biodegradation of BTEX: Progresses and Prospects. J. Environ. Chem. Eng., v. 2, p. 1104-1122, 2014. https://doi.org/10.1016/j.jece.2014.04.009. DOI: https://doi.org/10.1016/j.jece.2014.04.009

FIRMINO, P. I. M.; FARIAS, R. S.; BUARQUE, P. M. C.; RODRÍGUES, E.; LOPES, A. C.; SANTOS, A. B. DOS. Engineering and microbiological aspects of BTEX removal in bioreactors under sulfat-reducing conditions. Chem. Engin. J., v. 260, p. 503-512, 2015. https://doi.org/10.1016/j.cej.2014.08.111. DOI: https://doi.org/10.1016/j.cej.2014.08.111

GENNADIEV, A. N.; PIKOVSKII, Y. I; TSIBART, A. S.; SMIRNOVA, M. A. Hydrocarbons in Soils: Origin, Composition and Behavior (Review). Soil Chem, v. 48, p. 1195-1209, 2015. https://doi.org/10.1134/S1064229315100026. DOI: https://doi.org/10.1134/S1064229315100026

GHORBANIAN, M. MOUSSAVI, G. FARZADKIA, M. Investigating the performance of an up-flow anoxic fixed-bed bioreactor and a sequencing anoxic batch reactor for the biodegradation of hydrocarbons in petroleum-contaminated saline water. Int Biodeterior. Biodegrad., v. 90, p. 106-114, 2014. https://doi.org/10.1016/j.ibiod.2014.02.009. DOI: https://doi.org/10.1016/j.ibiod.2014.02.009

GHORBANNEZHAD, H., MOGHIMI, H., DASTGHEIB, S.M.M. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. Ecotoxicol. Environ. Saf., v. 164, p. 434-439, 2018. https://doi.org/10.1016/j.ecoenv.2018.08.046. DOI: https://doi.org/10.1016/j.ecoenv.2018.08.046

GIEG, L.M., DAVIDOVA, I.A., DUNCAN, K.E., SUFLITA, J.M. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ. Microbiol., v. 12, p. 3074–3086, 2010. https://doi.org/10.1111/j.1462-2920.2010.02282.x DOI: https://doi.org/10.1111/j.1462-2920.2010.02282.x

HADIBARATA, T., TACHIBANA, S., ITOH, K. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J. Hazard. Mater., v. 164, p. 911-917, 2009. https://doi.org/10.1016/j.jhazmat.2008.08.081. DOI: https://doi.org/10.1016/j.jhazmat.2008.08.081

HAIDER, F. U.; EJAZ, M.; CHEEMA, S. A.; KHAN, M. I.; ZHAO, B.; LIQUN, C.; SALIM, M. A.; NAVEED, M.; KHAN, N.; NÚÑEZ-DELGADO, A.; MUSTAFA, A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res., v. 197, p. 111031, 2021. https://doi.org/10.1016/j.envres.2021.111031. DOI: https://doi.org/10.1016/j.envres.2021.111031

HARITASH, A.K., KAUSHIK, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater., v. 169, p. 1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137

HARITASH, A.K., KAUSHIK, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater., v. 169, p.1–15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137.

HARITASH, A.K.; KAUSHIK, C.P. Biodegradation aspects of pollyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazard. Mat., v.169, p.1-15, 2009. https://doi.org/10.1016/j.jhazmat.2009.03.137. DOI: https://doi.org/10.1016/j.jhazmat.2009.03.137

HENTATI, O., LACHHAB, R., AYADI, M., KSIBI, M. Toxicity assessment for petroleumcontaminated soil using terrestrial invertebrates and plant bioassays. Environ. Monit. Assess. v.185, p.2989-2998. 2013. https://doi.org/10.1007/s10661-012-2766-y. DOI: https://doi.org/10.1007/s10661-012-2766-y

IHUNWO, O. C.; ONYEMA, M. O.; WEKPE, V. O.; OKOCHA, C.; SHAHABINIA, A. R.; EMMANUEL, L.; OKWE, V. N.; LAWSON, C. B.; MNOM, P. C.; DIBOFORI-ORJI, A. N.; BONNAIL, E. Ecological and human health risk assessment of total petroleum hydrocarbons in surface water and sediment from Woji Creek in the Niger Delta Estuary of Rivers State, Nigeria. Heliyon, v. 7, 2021. https://doi.org/10.1016/j.heliyon.2021.e07689. DOI: https://doi.org/10.1016/j.heliyon.2021.e07689

JIANG, W., CHEN, L., BATCHU, S. R., GARDINALI, P. R., JASA, L., MARSALEK, B., ZBORIL, R., DIONYSIOS, D. D., O’SHEA, K. E., SHARMA, V. K. Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ. Sci. Technol, v. 48, p. 12164–12172, 2014. https://doi.org/10.1021/es5030355 DOI: https://doi.org/10.1021/es5030355

KHAN, S., RAHMAN, A.M., PAYNE, J.F., RAHIMTULA, A.D. Mechanisms of petroleum hydrocarbon toxicity: Studies on the response of rat liver mitochondria to Prudhoe Bay crude oil and its aliphatic, aromatic and heterocyclic fractions. Toxicology, v. 42, p.131-142, 1986. https://doi.org/10.1016/0300-483X(86)90004-1 DOI: https://doi.org/10.1016/0300-483X(86)90004-1

KUPPUSAMY, S.; MADDELA, N. R.; MEGHARAJ, M.; VENKATESWARLU, K. An Overview of Total Petroleum Hydrocarbons. In: Total Petroleum Hydrocarbons. Springer nature Switzerland AG, p. 1-27 ,2020. https://doi.org/10.1007/978-3-030-24035-6_1. DOI: https://doi.org/10.1007/978-3-030-24035-6_1

LEAHY, J.G., COLWELL, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. V. 54, p. 305-315, 1990. PMID: 2215423 DOI: https://doi.org/10.1128/mr.54.3.305-315.1990

LI, M., SU, Y., CHEN, Y., WAN, R., ZHENG, X., LIU, K. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption. Appl. Microbiol. Biotechnol., v. 100, p. 5607-5618, 2016. https://doi.org/10.1007/s00253-016-7383-1 DOI: https://doi.org/10.1007/s00253-016-7383-1

LIU, G.-H., YE, Z., TONG, K., ZHANG, Y-H. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochemical Engineering Journal, v. 72, p. 48-53, 2013. https://doi.org/10.1016/j.bej.2012.12.017. DOI: https://doi.org/10.1016/j.bej.2012.12.017

MARCHAND, H., ST-ARNAUD, M., HOGLAND, W., BELL, T.H., HIJRI, M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil, Int Biodeterior. Biodegrad., v. 16, p. 48-57, 2017. https://doi.org/10.1016/j.ibiod.2016.09.030. DOI: https://doi.org/10.1016/j.ibiod.2016.09.030

MARTINS, Bianca. Biorremediação, Biotecnologia, Blog do Profissão Biotec (ISSN 2675-6013), Ciência, Sustentabilidade, v. 4 (2019). Available in: https://profissaobiotec.com.br/biorremediacao-solucao-sustentavel/. Accessed on: november 20 2021.

MATTURRO, B., VIGGI, C.C., AULENTA, F., ROSSETTI, S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front. Microbiol., v. 8, p. 952- 1005, 2017. https://doi.org/10.3389/fmicb.2017.00952 DOI: https://doi.org/10.3389/fmicb.2017.00952

MOHAMAD SHAHIMIN, M.F., FOGHT, J.M., SIDDIQUE, T. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds. Sci. Total Environ., v. 553, p. 250 – 257, 2016. https://doi.org/10.1016/j.scitotenv.2016.02.061. DOI: https://doi.org/10.1016/j.scitotenv.2016.02.061

OSSAI, I. C.; AHMED, A.; HASSAN, A.; HAMID, F. S., I. C.; AHMED, A.; HASSAN, A.; HAMID, F. S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Journal Pre-proof, p. 1-81, 2020. https://doi.org/10.1016/j.eti.2019.100526. DOI: https://doi.org/10.1016/j.eti.2019.100526

PATNAIK, P. A Comprehensive Guide to the Properties of Hazardous Chemical Substances, 2nd ed., John Wiley & Sons Publishers, 1999. ISBN: 978-0-471-71458-3

PEAKALL, D.B., HALLETT, D.J., BEND, J.R., FOUREMAN, G.L., MILLER, D.S. Toxicity of Prudhoe Bay crude oil and its aromatic fractions to nestling herring gulls. Environ. Res., v. 27, Pages 206-215, 1982. https://doi.org/10.1016/0013-9351(82)90071-8. DOI: https://doi.org/10.1016/0013-9351(82)90071-8

PINEDO, J.; IBÁÑEZ, R.; PRIMO, O.; GOMEZ, P.; IRABIEN, A. Preliminary assessment of soil contamination by hydrocarbon storage activities: main site investiga tion selection. J. Geochem. Explor., v.147, p.283–290 (2014). https://doi.org/10.1016/j.gexplo.2014.03.016. DOI: https://doi.org/10.1016/j.gexplo.2014.03.016

PRINCE, R.C. Petroleum Spill Bioremediation in Marine Environments. Crit. Rev. Microbiol., v.19, p. 217-242, 1996. https://doi.org/10.3109/10408419309113530 DOI: https://doi.org/10.3109/10408419309113530

PROVIDENTI, M.A., LEE, H., TREVORS, J.T. Selected factors limiting the microbial degradation of recalcitrant compounds. J. Ind. Microbiol. Biotechnol., v. 12, p. 379-395, 1993. https://doi.org/10.1007/BF01569669 DOI: https://doi.org/10.1007/BF01569669

ROSTAMI, S.; ABESI, O.; AMINI-RAD, H. Assessment of the toxicity, origin, biodegradation and weathering extent of petroleum hydrocarbons in surface sediments of Pars Special Economic Energy Zone, Persian Gulf Assessment of the toxicity, origin, biodegradation and weathering extent of petroleum hydrocarbons in surface sediments of Pars Special Economic Energy Zone, Persian Gulf. Marine Poll. Bull., v.138, p. 302-311, 2019. https://doi.org/10.1016/j.marpolbul.2018.11.034 DOI: https://doi.org/10.1016/j.marpolbul.2018.11.034

SAMMARCO, P.W., KOLIAN, S.R., WARBY, R.A.F., BOULDIN, J.L., SUBRA, W.A., PORTER, S.A. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Arch. Toxicol. v.90, p.829–837, 2016. https://doi.org/10.1007/s00204-015-1526-5. DOI: https://doi.org/10.1007/s00204-015-1526-5

SHAHIDI, D.; ROY, RENÉ; AZZOUZ, A. Advances in catalytic oxidation of organic pollutants – Prospects for thorough mineralization by natural clay catalysts. Applied Cat. B: Environ, v. 174-175, p. 277-292, 2015. https://doi.org/10.1016/j.apcatb.2015.02.042 DOI: https://doi.org/10.1016/j.apcatb.2015.02.042

SILVA, I.S., DOS SANTOS, E.C., MENEZES, C.R., FARIA, A.F., FRANCISCON, E., GROSSMAN, M., DURRANT, L.R. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour. Technol., v. 100, p. 4669-4675, 2009. https://doi.org/10.1016/j.biortech.2009.03.079. DOI: https://doi.org/10.1016/j.biortech.2009.03.079

SINGH, O.; VISHNU, M.C.; SHARMA, K.K.; BORTHAKUR, A.; SRIVASTAVA, P.; PAL, D. B.; TIWARY, D.; MISHRA, P. K. Photocatalytic degradation of Acid Red dye stuff in the presence of activated carbon-TiO2 composite and its kinetic enumeration. Journal of Water Process Eng., v. 12, p. 20-31, 2016a. https://doi.org/10.1016/j.jwpe.2016.04.007. DOI: https://doi.org/10.1016/j.jwpe.2016.04.007

SINGH, P.; BORTHAKUR, A. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Clea. Prod., v. 196, p. 1669-1680, 2018. https://doi.org/10.1016/j.jclepro.2018.05.289. DOI: https://doi.org/10.1016/j.jclepro.2018.05.289

SINGH, P.; OJHA, A.; BORTHAKUR, A.; SINGH, R.; LAHIURY, D.; TIWARY, D.; MISHRA, P. K. Emerging trends in photodegradation of petrochemical wastes: a review. Environ. Sci. and Poll. Control, v.23, p. 22340-22364, 2016b. https://doi.org/10.1007/s11356-016-7373-y. DOI: https://doi.org/10.1007/s11356-016-7373-y

SPEICHT, J. G. Sources and Types of Organic Pollutants. Environ. Org. Chem. for Engineers, p. 153-201, 2017. https://doi.org/10.1016/B978-0-12-804492-6.00004-6. DOI: https://doi.org/10.1016/B978-0-12-804492-6.00004-6

STASIK, S.; WICK, L. Y.; WENDT-POTTHOFF, K. Anaerobic BTEX degradation in oil sands tailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere, v. 138, p. 133-139, 2015. https://doi.org/10.1016/j.chemosphere.2015.05.068. DOI: https://doi.org/10.1016/j.chemosphere.2015.05.068

SUPERBAC. O que é biorremediação de solo e por que é importante fazer? 2018. Available in: http://www.superbac.com.br/o-que-e-biorremediacao-de-solo-e-por-que-e-importante-fazer/. Accessed on: november 19 2021.

THAPA, B.; KC, A. K.; GHIMIRE, A. A review on bioremediation of petroleum hydrocarbon contaminants in soil. J. of Sci., Engin. and Techn., v.8, 2012. https://doi.org/10.3126/kuset.v8i1.6056. DOI: https://doi.org/10.3126/kuset.v8i1.6056

TOLOSA, I.; MORA, STEPHEN DE; SHEIKHOLESLAMI, M. R.; VILLENEUVE, JEAN-PIERRE; BARTOCCI, J.; CATTINI, C. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Poll. Bull., v. 48, 2004. https://doi.org/10.1016/S0025-326X(03)00255-8. DOI: https://doi.org/10.1016/S0025-326X(03)00255-8

TRUSKEWYCZ, A.; GUNDRY, T. D.; KHUDUR, L. S.; KOLOBARIC, A.; TAHA, M.; ABURTO-MEDINA, A.; BALL, A. S.; SHAHSAVARI, E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems – Fate and Microbial Responses. Molecules, v. 24, p. 1-20, 2019. https://doi.org/10.3390/molecules24183400. DOI: https://doi.org/10.3390/molecules24183400

UDDIN, S.; FOWLER, S. W.; SAEED, T.; JUPP, B.; FAIZUDDIN, M. Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review. Marine Poll. Bull., v. 173, p. 112913, 2021. https://doi.org/10.1016/j.marpolbul.2021.112913. DOI: https://doi.org/10.1016/j.marpolbul.2021.112913

USEPA. United States Environmental Protection Agency. Developing innovative solutions for oil spill cleanup, 2007. Disponível em: https://www.epa.gov/. Acessed on: oct. 24 2021.

USEPA. United States Environmental Protection Agency. Understanding oil spills and oil spill response, 1999. Available in: https://books.google.com.br/books?hl=pt-BR&lr=&id=px5SAAAAMAAJ&oi=fnd&pg=PA1&dq=Understanding+Oil+Spills+And+Oil+Spill+Response&ots=cJ6TuRjoQr&sig=MTbH1O5_bfwmMjnr9Ur2ztbMOAw#v=onepage&q=Understanding%20Oil%20Spills%20And%20Oil%20Spill%20Response&f=false. Accessed October 12, 2021

VALENTIN, L., NOUSIAINEN, A., MIKKONEN, A. Emerging organic contaminants in sludges: analysis, fate and biological treatment. Hdb. Environ. Chem., v. 24, p.1-30, 2013. https:doi:10.1007/978-3-642-35609-4. DOI: https://doi.org/10.1007/698_2012_208

VARJANI, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol., v. 223, p. 277-286, 2017. https://doi.org/10.1016/j.biortech.2016.10.037 DOI: https://doi.org/10.1016/j.biortech.2016.10.037

WANG, L.-Y., GAO, C.-X., MBADINGA, S.M., ZHOU, L., LIU, J.-F. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int. Biodeterior. Biodegrad, v. 65, p. 444–450, 2011. https://doi.org/10.1016/j.ibiod.2010.12.010 DOI: https://doi.org/10.1016/j.ibiod.2010.12.010

WANG, S., NOMURA, N., NAKAJIMA, T., UCHIYAMA, H. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J. Biosci. Bioeng., v. 113, p. 624-630, 2012. https://doi.org/10.1016/j.jbiosc.2012.01.005 DOI: https://doi.org/10.1016/j.jbiosc.2012.01.005

WANG, J.; ZHONGZHI, Z.; YOUMING, S.; WEI, H.; FENG, H.; HONGGUANG, S. Phytoremediation of petroleum polluted soil. Petroleum Sci., v. 5, P. 167-171, 2008. https://doi10.1007/s12182-008-0026-0 DOI: https://doi.org/10.1007/s12182-008-0026-0

WARTELL, B., BOUFADEL, M., RODRIGUEZ-FREIRE, L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review. Int. Biodeterior. Biodegrad., v. 157, 2021. https://doi.org/10.1016/j.ibiod.2020.105156 DOI: https://doi.org/10.1016/j.ibiod.2020.105156

XUE, J., YU, Y., BAI, Y., WANG, L., WU, Y. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review. Curr. Microbiol, v. 71, p. 220–228, 2015. https://doi.org/10.1007/s00284-015-0825-7 DOI: https://doi.org/10.1007/s00284-015-0825-7

YAKUBU, M.B. Biological approach to oil spills remediation in the soil. African Journal of Biotechnology, v. 6, p. 2735-2739, 2007. 10.5897 / AJB2007.000-2437 DOI: https://doi.org/10.5897/AJB2007.000-2437

YANTO, D.H.Y., TACHIBANA, S. Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp. NG007. Int Biodeterior. Biodegrad., v. 85, p. 438-450, 2013. https://doi.org/10.1016/j.ibiod.2013.09.008. DOI: https://doi.org/10.1016/j.ibiod.2013.09.008

YANTO, D.H.Y., TACHIBANA, S. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J. Hazard. Mater., v. 278, p. 454-463, 2014. https://doi.org/10.1016/j.jhazmat.2014.06.039. DOI: https://doi.org/10.1016/j.jhazmat.2014.06.039

ZHANG, X., KONG, D., LIU, X., XIE, H., LOU, X., ZENG, C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere, v. 273, n. 129666, 2021. https://doi.org/10.1016/j.chemosphere.2021.129666. DOI: https://doi.org/10.1016/j.chemosphere.2021.129666

Descargas

Publicado

2023-01-31

Cómo citar

Felisardo, R. J. A., & Gonçalves, A. de A. (2023). Biodegradación y Biotransformación de Hidrocarburos de Petróleo: Avances, Perspectivas y Desafíos. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 27, e1. https://doi.org/10.5902/2236117069288

Número

Sección

ENVIRONMENTAL THECNOLOGY