Caracterização quantitativa do volume de cavidades em um dispositivo de cavitação hidrodinâmica usando dinâmica de fluidos computacional
DOI:
https://doi.org/10.5902/2236117062707Palavras-chave:
Processo de oxidação avançado, Cavitação hidrodinâmica, Placa de orifícioResumo
A cavitação hidrodinâmica tem sido amplamente estudada por seu potencial em remover poluentes emergentes. Apesar do avanço dos estudos experimentais envolvendo este fenômeno, ainda são necessários estudos computacionais que avaliem a influência da geometria dos dispositivos de cavitação nos parâmetros de escoamento. O objetivo deste artigo foi avaliar, por meio da Dinâmica de Fluidos Computacional (CFD), a influência da mudança da geometria de um dispositivo de Venturi sobre o volume de cavidades formadas em sua seção divergente. Os parâmetros geométricos modificados no Venturi foram: o ângulo divergente e a relação entre a altura e a largura da garganta (h/w). O volume das cavidades é um parâmetro importante porque influencia a intensidade da cavitação. Um sistema de bancada cavitacional foi construído a fim de obter dados de entrada para simulação. Os resultados mostraram que o aumento do ângulo divergente de 6,5° para 18,5° reduziu gradativamente o volume das cavidades de 93 mm3 para 10 mm3. Entre as relações h/w = 0,05 e h/w = 0,45 observou-se a formação de cavidades entre 106 mm3 e 77 mm3, porém entre h/w = 0,45 e h/w = 1,0 ocorreu a formação de 213 mm3. Portanto, Venturi's com ângulo divergente menor que 6,5º e relação h/w maior que 0,45 produzem maior volume de cavidades. O maior volume de cavidades não necessariamente produzirá maior intensidade cavitacional, uma vez que nuvens de cavitação podem se formar e reduzir a intensidade de implosão das bolhas de cavitação.
Downloads
Referências
ALVES, P. H. L.; SILVA, P. S. L.; FERREIRA, D. C.; GONÇALVES, J. C. S. I. COD removal from sucrose solution using hydrodynamic cavitation and hydrogen peroxide: a comparison between Venturi device and orifice plate. Revista Brasileira de Recursos Hídricos. 2019;24:1-8.
ANSYS, Inc. FLUENT Theory Guide. Ansys Inc. 2011.
ASHRAFIZADEH, S. M.; GHASSEMI, H. Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Measurement and Instrumentation. 2015;42:6-15.
BAGAL, M. V.; GOGATE, P. R. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrasonics Sonochemistry. 2014;21(3):1035-1043.
BARIK, A. J.; GOGATE, P. R. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs. Ultrasonics Sonochemistry. 2018;40:383-394.
BASHIR, T. A.; et al. The CFD driven optimisation of a modified venturi for cavitational activity. The Canadian Journal of Chemical Engineering. 2011;89(6):1366-1375.
BATISTA, M. D.; ANHÊ, A. C.B. M.; GONÇALVES, J. C. S. I. Use of Hydrodynamic Cavitation for Algae Removal: Effect on the Inactivation of Microalgae Belonging to Genus Scenedesmus. Water, Air, & Soil Pollution. 2017;228(11):1-8.
BRINKHORST, S.; VON LAVANTE, E.; WENDT, G. Numerical investigation of cavitating Herschel Venturi-Tubes applied to liquid flow metering. Flow Measurement and Instrumentation. 2015;43:23-33.
CARPENTER, J.; GEORGE, S.; SAHARAN, V. K. Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: Effect of geometry and cavitation number. Chemical Engineering and Processing: Process Intensification. 2017;116:97-104.
DULAR, M.; et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry. 2016;29:577-588.
HILARES, R. T.; et al. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresource Technology. 2017;235:301-308.
KULDEEP, S. V. K. Computational study of different venturi and orifice type hydrodynamic cavitating devices. Journal of Hydrodynamics. 2016;28(2):293-305.
KUMAR, P.; KHANNA, S.; MOHOLKAR, V. S. Flow regime maps and optimization thereby of hydrodynamic cavitation reactors. Aiche Journal. 2012;58(12):3858-3866.
LI, M.; et al. Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Minerals Engineering. 2019;132:268-274.
LI, X, et al. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method. Journal of Mechanical Science and Technology. 2017;31(1):269-279.
MADDIKERI, G. L.; GOGATE, P. R.; PANDIT, A. B. Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel. 2014;137:285-292.
MOHOLKAR, V. S.; KUMAR, P. S.; SENTHIL, P.; PANDIT, A. B. Hydrodynamic cavitation for sonochemical effects. Ultrasonics Sonochemistry. 1999;6(1-2):53-65.
MOHOLKAR, V. S.; PANDIT, A. B. Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation. Chemical Engineering Science. 2001;56(4):1411-1418.
PATIL, P. N.; BOTE, S. D.; GOGATE, P.R. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation. Ultrasonics Sonochemistry. 2014;21(5):1770-1777.
PAWAR, S. K.; et al. Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries. Aiche Journal. 2017;63(10):4705-4716.
RAJORIYA, S.; et al. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. Journal of Hazardous Materials. 2018;344:1109-1115.
RAJORIYA, S.; BARGOLE, S.; SAHARAN, V. K. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrasonics Sonochemistry. 2017;37:192-202.
SAHARAN, V. K. et al. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics Sonochemistry. 2013;20(1):345-353.
SARC, A. et al. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrasonics Sonochemistry. 2017;34:51-59.
SAXENA, S.; SAHARAN, V. K.; GEORGE, S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. Journal of Cleaner Production. 2018;198:1406-1421.
SIMPSON, A.; RANADE, V. V. Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation. Aiche Journal, 2018a;65(1):421-433.
SIMPSON, A.; RANADE, V. V. Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chemical Engineering Research and Design. 2018b;136:698-711.
THANEKAR, P.; MURUGESAN, P.; GOGATE, P. R. Improvement in biological oxidation process for the removal of dichlorvos from aqueous solutions using pretreatment based on Hydrodynamic Cavitation. Journal of Water Process Engineering. 2018;23:20-26.
THANEKAR, P.; PANDA, M.; GOGATE, P. R. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrasonics Sonochemistry. 2018;40:567-576.
WANG, X.; ZHANG, Y. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. Journal of Hazardous Materials. 2009;161(1):202-207.
XU, C.; HEISTER, S. D.; FIELD, R. Modeling Cavitating Venturi Flows. Journal of Propulsion and Power. 2002;18(6):1227-1234.
ZUPANC, M.; et al. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry. 2013;20(4):1104-1112.
Downloads
Publicado
Versões
- 2022-07-28 (2)
- 2020-12-04 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.