Aplicação do óxido de cálcio como catalisador heterogêneo para a transesterificação etílica de óleo de soja residual de fritura
DOI:
https://doi.org/10.5902/2236117062678Palavras-chave:
Biodiesel, Residual oil, Calcium oxideResumo
O biodiesel pode ser obtido através da reação de transesterificação de um álcool de cadeia curta com um triacilglicerol, que pode ser obtido a partir de óleos vegetais ou gorduras animais na presença de um catalisador. A utilização de etanol como reagente justifica-se porque este tem sua produção consolidada no Brasil. Dentre os catalisadores heterogêneos, o CaO mostra potencial nas reações de transesterificação, pois apresenta baixo custo, pode ser reutilizado e não é corrosivo. A reciclagem do óleo de fritura para a produção de biodiesel representa uma alternativa de destinação de um resíduo e não compete com o mercado alimentício. O óleo residual e o CaO passaram por pré-tratamento antes das reações de transesterificação. Foi aplicado um delineamento experimental Box-Behnken de 3 fatores: temperatura, razão molar etanol:óleo e tempo de reação. As reações foram conduzidas em um reator batelada, em que foram adicionados óleo, etanol e catalisador. As amostras foram filtradas à vácuo e conduzidas a um evaporador rotativo, para remoção do etanol excedente. A mistura resultante foi centrifugada e posteriormente retirada uma amostra da fase sobrenadante. O rendimento foi determinado a partir de um balanço de massa, baseado nas concentrações de acilgliceróis, que foram determiadas através de uma metodologia em HPLC-UV. Um modelo de regressão linear de segunda ordem foi construído e validado através de testes estatísticos com nível de significância de 5%. Os parâmetros operacionais otimizados são razão molar etanol:óleo 15:1, 81,2 ºC e 6 h de reação. A partir dos resultados obtidos infere-se que é viável a utilização do óleo residual de fritura como matéria-prima, etanol como reagente e CaO como catalisador para a produção de biodiesel.
Downloads
Referências
ANDRADE, D. F.; MAZZEI, J. L.; D’AVILA, L. A. Separation of acylglycerols from biodiesel by high performance liquid chromatography and solid-phase extraction. Revista Virtual de Química, v. 3, p. 452-466, http://dx.doi.org/10.5935/1984-6835.20110050, 2011.
ANP, Ministério de Minas e Energia. Biodiesel. 2016 Aug 16 [cited 2020 May 12]. Available from: <http://www.anp.gov.br/biocombustiveis/biodiesel>.
BOEY, P. L.; MANIAM, G. P.; HAMID, S. A. Performance of calcium oxide as a heterogeneous catalyst in biodiesel. Chemical Engineering Journal, v. 168, p. 15-22, https://doi.org/10.1016/j.cej.2011.01.009, 2011.
BOX, G. E. P.; BEHNKEN, D. W. A class of second order rotatable designs derivable from those of first order. Annals of Mathematical Statistics, v. 31, p. 838-864, https://doi.org/10.1214/aoms/1177705661, 1960.
CHEN, Y. C.; LIN, D. Y; CHEN, B. H. Transesterification of acid soybean oil for biodiesel production using lithium metasilicate catalyst prepared from diatomite. Journal of the Taiwan Institute of Chemical Engineers, v. 79, p. 31-36, https://doi.org/10.1016/j.jtice.2017.05.001, 2017.
CHEUNG, K. L.; POLIDORI, A.; NTZIACHRISTOS, L.; TZAMKIOZIS, T.; SAMARAS, Z.; CASSEE, F. R.; GERLOFS, M.; SIOUTAS, C. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environmental Science and Technology, v. 43, p. 6334-6340, https://doi.org/10.1021/es900819t, 2009.
CHRISTOFF, P. Produção de biodiesel a partir do óleo residual de fritura comercial. Estudo de caso: Guaratuba, Litoral Paranaense [dissertaton]. Curitiba: LACTEC, p. 82, <http://sistemas.institutoslactec.org.br/mestrado/dissertacoes/arquivos/paulochristoff.pdf>, 2006.
COLOMBO, K. Produção de biodiesel por transesterificação com catálise heterogênea utilizando CaO como catalisador [dissertation]. Blumenau: Centro de Ciências Tecnológicas/FURB, p. 179, <https://bu.furb.br/consulta/novaConsulta/recuperaMfnCompleto.php?menu=esconde&CdMFN=352882>, 2013.
DI NICOLA, G.; PACETTI, M.; POLONARA, F.; SANTORI, G.; STRYJEK R. Development and optimization of a method for analyzing biodiesel mixtures with non-aqueous reversed phase liquid chromatography. Journal of Chromatography A, v. 1190, p. 120-126, https://doi.org/10.1016/j.chroma.2008.02.085, 2008.
DIB, F. H. Produção de biodiesel a partir de óleo residual reciclado e realização de testes comparativos com outros tipos de biodiesel e proporções de mistura em um moto-gerador [dissertation]. Ilha Solteira: Faculdade de Engenharia de Ilha Solteira/UNESP, p. 144, <https://repositorio.unesp.br/handle/11449/88869>, 2010.
GUIMARÃES, J. R. P. de F. Toxicologia das emissões veiculares de diesel : um problema de saúde ocupacional e pública. Revista de Estudos Ambientais, v. 6, p. 82-94, 2004.
HAJÉK, M.; SKOPAL, F.; ČAPEK, L.; ČERNOCH, M.; KUTÁLEK, P. Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy, v. 48, p. 392-397, https://doi.org/10.1016/j.energy.2012.06.052, 2012.
HANH, H. D.; DONG, N. T.; OKITSU, K.; MAEDA, Y.; NISHIMURA, R. Effects of molar ratio, catalyst concentration and temperature on transesterification of triolein with ethanol under ultrasonic iradiation. Journal of the Japan Petroleum Institute, v. 50, p. 195-199, https://doi.org/10.1627/jpi.50.195, 2007.
HOLČAPEK, M.; JANDERA, P.; FISCHER, J.; PROKEŠ, B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. Journal of Chromatography A, v. 858, p. 13-31, https://doi.org/10.1016/S0021-9673(99)00790-6, 1999.
JAMIL, F.; AL-HAJ, L.; AL-MUHTASEB, A. H.; AL-HINAI, M. A.; BAAWAIN, M.; RASHID, U.; AHMAD, M. N. M. Current scenario of catalysts for biodiesel production: A critical review. Reviews in Chemical Engineering, v. 34, p. 267-297, https://doi.org/10.1515/revce-2016-0026, 2018.
JOSHI, S.; GOGATE, P. R.; MOREIRA JR, P. F.; GIUDICI, R. Intensification of Biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry, v. 39, p. 645-653, https://doi.org/10.1016/j.ultsonch.2017.05.029, 2017.
KIRUBAKARAN, M.; SELVAN, V. A. M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, v. 82, p. 390-401, https://doi.org/10.1016/j.rser.2017.09.039, 2018.
LATCHUBUGATA, C. S.; KONDAPANENI, R. V.; PATLURI, K. K.; VIRENDRA, U.; VEDANTAM, S. Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design, v. 135, p. 129-39, https://doi.org/10.1016/j.cherd.2018.05.022, 2018.
LIMA, A. L.; LIMA, A. P.; PORTELA, F. M.; SANTOS, D. Q.; NETO, W. B.; HERNÁNDEZ-TERRONES, M. G.; FABRIS, J. D. Parâmetros da reação de transesterificação etílica com óleo de milho para produção de biodiesel. Eclética Química, v. 35, p. 101-106, http://dx.doi.org/10.1590/S0100-46702010000400013, 2010.
LÔBO, I. P.; FERREIRA S. L. C.; DA CRUZ, R. S. Biodiesel: Parâmetros de qualidade e métodos analíticos. Química Nova, v. 32, p. 1596-1608, http://dx.doi.org/10.1590/S0100-40422009000600044, 2009.
MOFIJUR, M.; MASJUKI, H. H.; KALAM, M. A.; ATABANI, A.E.; SHAHABUDDIN, M.; PALASH, S. M.; HAZRAT, M. A. Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, v. 28, p. 441-455, https://doi.org/10.1016/j.rser.2013.07.051, 2013.
MONTGOMERY, D. C. Design and analysis of experiments. 8th ed. Tempe: John Wiley & Sons; 2012.
MORAIS, F. R.; LOPES, C. S.; LIMA NETO, E. G.; RAMOS, A. L. D.; DA SILVA, G. F. Influência da Temperatura e da Razão Molar na Produção Contínua de Biodiesel. Scientia Plena, v. 9, p. 104-202, 2013.
PIKER, A.; TABAH, B.; PERKAS, N.; GEDANKEN, A. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel, v. 182, p.34-41, https://doi.org/10.1016/j.fuel.2016.05.078, 2016.
ROOSTA, A.; SABZPOONSHAN, I. Modeling the effects of cosolvents on biodiesel production. Fuel, v. 186, p. 779-786, https://doi.org/10.1016/j.fuel.2016.09.037, 2016.
SOLTANI, S.; RASHID, U.; AL-RESAYES, S. I.; NEHDI, I. A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Conversion and Management, v. 141, p. 183-205, https://doi.org/10.1016/j.enconman.2016.07.042, 2017.
SOUZA, S. P.; NOGUEIRA, L. A. H.; MARTINEZ, J.; CORTEZ, L. A. B. Sugarcane can afford a cleaner energy profile in Latin America & Caribbean. Renewable Energy, v. 121, p. 164-172, https://doi.org/10.1016/j.renene.2018.01.024, 2018.
TALHA, N. S.; SULAIMAN, S. Overview of Catalysts in Biodiesel Production. ARPN Journal of Engineering and Applied Sciences, v. 11, p. 439-448, <http://www.arpnjournals.com/>, 2016.
WANG, W. G.; LYONS, D. W.; CLARK, N. N.; GAURAM, M.; NORTON, P. M. Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environmental Science and Technology, v. 34, p. 933-939, https://doi.org/10.1021/es981329b, 2000.
YU, L.; GE, Y.; TAN, J.; HE, C.; WANG, X.; LIU, H.; ZHAO, W.; GUO, J.; FU, G.; FENG, X.; WANG, X. Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes. Fuel, v. 115, p. 220-226, https://doi.org/10.1016/j.fuel.2013.06.056, 2014
Downloads
Publicado
Versões
- 2022-07-28 (2)
- 2020-12-04 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.