Application of calcium oxide as heterogeneous catalyst for ethylic transesterification of residual frying soybean oil
DOI:
https://doi.org/10.5902/2236117062678Palabras clave:
Biodiesel, Residual oil, Calcium oxideResumen
Biodiesel can be produced through the transesterification reaction of a short-chain alcohol with a triacylglycerol, that can be obtained from vegetable oils or animal fats, in the presence of a catalyst. The use of ethanol as reactant is justified since its production is consolidated in Brazil. Among the heterogeneous catalysts, CaO shows potential in the transesterification reactions because it has a low cost, can be reused and is not corrosive. The recycling of frying oil for the production of biodiesel represents an alternative for the disposal of a waste and does not compete with the food industry. The residual oil and CaO were subjected to a pre-treatment before the transesterification reactions. A Box-Behnken experimental design was applied with 3 factors: temperature, ethanol:oil molar ratio and reaction time. The reactions were carried out in a batch reactor, in which oil, ethanol and the catalyst were added. The samples were vacuum filtered and conducted to a rotary evaporator, in order to remove excess ethanol. The resulting mixture was centrifuged and, subsequently, a sample was collected from the supernatant phase. The yield was determined by a mass balance based in the concentrations of acylglycerols, that were determined through an HPLC-UV methodology. A second-order linear regression model was built and validated through statistic tests with a 5% significance level. The optimized operational parameters are 15:1 ethanol:oil molar ratio, 81.2 ºC e 6 h of reaction. From the obtained results it can be inferred that it is feasible to use residual frying oil as raw material, ethanol as reactant and CaO as catalyst for the production of biodiesel.
Descargas
Citas
ANDRADE, D. F.; MAZZEI, J. L.; D’AVILA, L. A. Separation of acylglycerols from biodiesel by high performance liquid chromatography and solid-phase extraction. Revista Virtual de Química, v. 3, p. 452-466, http://dx.doi.org/10.5935/1984-6835.20110050, 2011.
ANP, Ministério de Minas e Energia. Biodiesel. 2016 Aug 16 [cited 2020 May 12]. Available from: <http://www.anp.gov.br/biocombustiveis/biodiesel>.
BOEY, P. L.; MANIAM, G. P.; HAMID, S. A. Performance of calcium oxide as a heterogeneous catalyst in biodiesel. Chemical Engineering Journal, v. 168, p. 15-22, https://doi.org/10.1016/j.cej.2011.01.009, 2011.
BOX, G. E. P.; BEHNKEN, D. W. A class of second order rotatable designs derivable from those of first order. Annals of Mathematical Statistics, v. 31, p. 838-864, https://doi.org/10.1214/aoms/1177705661, 1960.
CHEN, Y. C.; LIN, D. Y; CHEN, B. H. Transesterification of acid soybean oil for biodiesel production using lithium metasilicate catalyst prepared from diatomite. Journal of the Taiwan Institute of Chemical Engineers, v. 79, p. 31-36, https://doi.org/10.1016/j.jtice.2017.05.001, 2017.
CHEUNG, K. L.; POLIDORI, A.; NTZIACHRISTOS, L.; TZAMKIOZIS, T.; SAMARAS, Z.; CASSEE, F. R.; GERLOFS, M.; SIOUTAS, C. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars. Environmental Science and Technology, v. 43, p. 6334-6340, https://doi.org/10.1021/es900819t, 2009.
CHRISTOFF, P. Produção de biodiesel a partir do óleo residual de fritura comercial. Estudo de caso: Guaratuba, Litoral Paranaense [dissertaton]. Curitiba: LACTEC, p. 82, <http://sistemas.institutoslactec.org.br/mestrado/dissertacoes/arquivos/paulochristoff.pdf>, 2006.
COLOMBO, K. Produção de biodiesel por transesterificação com catálise heterogênea utilizando CaO como catalisador [dissertation]. Blumenau: Centro de Ciências Tecnológicas/FURB, p. 179, <https://bu.furb.br/consulta/novaConsulta/recuperaMfnCompleto.php?menu=esconde&CdMFN=352882>, 2013.
DI NICOLA, G.; PACETTI, M.; POLONARA, F.; SANTORI, G.; STRYJEK R. Development and optimization of a method for analyzing biodiesel mixtures with non-aqueous reversed phase liquid chromatography. Journal of Chromatography A, v. 1190, p. 120-126, https://doi.org/10.1016/j.chroma.2008.02.085, 2008.
DIB, F. H. Produção de biodiesel a partir de óleo residual reciclado e realização de testes comparativos com outros tipos de biodiesel e proporções de mistura em um moto-gerador [dissertation]. Ilha Solteira: Faculdade de Engenharia de Ilha Solteira/UNESP, p. 144, <https://repositorio.unesp.br/handle/11449/88869>, 2010.
GUIMARÃES, J. R. P. de F. Toxicologia das emissões veiculares de diesel : um problema de saúde ocupacional e pública. Revista de Estudos Ambientais, v. 6, p. 82-94, 2004.
HAJÉK, M.; SKOPAL, F.; ČAPEK, L.; ČERNOCH, M.; KUTÁLEK, P. Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy, v. 48, p. 392-397, https://doi.org/10.1016/j.energy.2012.06.052, 2012.
HANH, H. D.; DONG, N. T.; OKITSU, K.; MAEDA, Y.; NISHIMURA, R. Effects of molar ratio, catalyst concentration and temperature on transesterification of triolein with ethanol under ultrasonic iradiation. Journal of the Japan Petroleum Institute, v. 50, p. 195-199, https://doi.org/10.1627/jpi.50.195, 2007.
HOLČAPEK, M.; JANDERA, P.; FISCHER, J.; PROKEŠ, B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. Journal of Chromatography A, v. 858, p. 13-31, https://doi.org/10.1016/S0021-9673(99)00790-6, 1999.
JAMIL, F.; AL-HAJ, L.; AL-MUHTASEB, A. H.; AL-HINAI, M. A.; BAAWAIN, M.; RASHID, U.; AHMAD, M. N. M. Current scenario of catalysts for biodiesel production: A critical review. Reviews in Chemical Engineering, v. 34, p. 267-297, https://doi.org/10.1515/revce-2016-0026, 2018.
JOSHI, S.; GOGATE, P. R.; MOREIRA JR, P. F.; GIUDICI, R. Intensification of Biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer. Ultrasonics Sonochemistry, v. 39, p. 645-653, https://doi.org/10.1016/j.ultsonch.2017.05.029, 2017.
KIRUBAKARAN, M.; SELVAN, V. A. M. A comprehensive review of low cost biodiesel production from waste chicken fat. Renewable and Sustainable Energy Reviews, v. 82, p. 390-401, https://doi.org/10.1016/j.rser.2017.09.039, 2018.
LATCHUBUGATA, C. S.; KONDAPANENI, R. V.; PATLURI, K. K.; VIRENDRA, U.; VEDANTAM, S. Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design, v. 135, p. 129-39, https://doi.org/10.1016/j.cherd.2018.05.022, 2018.
LIMA, A. L.; LIMA, A. P.; PORTELA, F. M.; SANTOS, D. Q.; NETO, W. B.; HERNÁNDEZ-TERRONES, M. G.; FABRIS, J. D. Parâmetros da reação de transesterificação etílica com óleo de milho para produção de biodiesel. Eclética Química, v. 35, p. 101-106, http://dx.doi.org/10.1590/S0100-46702010000400013, 2010.
LÔBO, I. P.; FERREIRA S. L. C.; DA CRUZ, R. S. Biodiesel: Parâmetros de qualidade e métodos analíticos. Química Nova, v. 32, p. 1596-1608, http://dx.doi.org/10.1590/S0100-40422009000600044, 2009.
MOFIJUR, M.; MASJUKI, H. H.; KALAM, M. A.; ATABANI, A.E.; SHAHABUDDIN, M.; PALASH, S. M.; HAZRAT, M. A. Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, v. 28, p. 441-455, https://doi.org/10.1016/j.rser.2013.07.051, 2013.
MONTGOMERY, D. C. Design and analysis of experiments. 8th ed. Tempe: John Wiley & Sons; 2012.
MORAIS, F. R.; LOPES, C. S.; LIMA NETO, E. G.; RAMOS, A. L. D.; DA SILVA, G. F. Influência da Temperatura e da Razão Molar na Produção Contínua de Biodiesel. Scientia Plena, v. 9, p. 104-202, 2013.
PIKER, A.; TABAH, B.; PERKAS, N.; GEDANKEN, A. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel, v. 182, p.34-41, https://doi.org/10.1016/j.fuel.2016.05.078, 2016.
ROOSTA, A.; SABZPOONSHAN, I. Modeling the effects of cosolvents on biodiesel production. Fuel, v. 186, p. 779-786, https://doi.org/10.1016/j.fuel.2016.09.037, 2016.
SOLTANI, S.; RASHID, U.; AL-RESAYES, S. I.; NEHDI, I. A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review. Energy Conversion and Management, v. 141, p. 183-205, https://doi.org/10.1016/j.enconman.2016.07.042, 2017.
SOUZA, S. P.; NOGUEIRA, L. A. H.; MARTINEZ, J.; CORTEZ, L. A. B. Sugarcane can afford a cleaner energy profile in Latin America & Caribbean. Renewable Energy, v. 121, p. 164-172, https://doi.org/10.1016/j.renene.2018.01.024, 2018.
TALHA, N. S.; SULAIMAN, S. Overview of Catalysts in Biodiesel Production. ARPN Journal of Engineering and Applied Sciences, v. 11, p. 439-448, <http://www.arpnjournals.com/>, 2016.
WANG, W. G.; LYONS, D. W.; CLARK, N. N.; GAURAM, M.; NORTON, P. M. Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environmental Science and Technology, v. 34, p. 933-939, https://doi.org/10.1021/es981329b, 2000.
YU, L.; GE, Y.; TAN, J.; HE, C.; WANG, X.; LIU, H.; ZHAO, W.; GUO, J.; FU, G.; FENG, X.; WANG, X. Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes. Fuel, v. 115, p. 220-226, https://doi.org/10.1016/j.fuel.2013.06.056, 2014
Descargas
Publicado
Versiones
- 2022-07-28 (2)
- 2020-12-04 (1)
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
DECLARATION