Biosorption textile wastewater employing lemon peel derivatives: data analysis and kinetic modeling
DOI :
https://doi.org/10.5902/2236117065265Mots-clés :
Agro-industrial waste, Binary biosorption, Lemon peel, Neural network, Textilesynthetic dyes, Wastewater treatmentRésumé
The present work aimed to evaluate the efficiency of an agro-industrial waste biosorbent in the removal of real textile wastewater. A model sample with methylene blue and remazol golden yellow at equimolar proportions was prepared to be treated with in natura, carbonized, and activated lemon peel beads. Activated biosorbent demonstrated superior capacity and removal rates. Characterization analyses investigated the morphology and physico-chemical properties of the biomaterial. The pH (2.0) and dosage (1.6 g.L-1) studies were carried out to select parameters for further studies. In kinetic assays, methylene blue equilibrium was reached faster than remazol golden yellow RNL. The analyses of fitting parameters indicated Elovich kinetic model to describe biosorption of the yellow dye while pseudo-first-order fit best to the blue dye biosorption data. The intraparticle diffusion model indicated that more than one step may limit biosorption kinetics. In the treatment of real textile wastewater, 94.22% of dyes removal was attained after 360 minutes of operation at the selected operational conditions. Kinetics of adsorption of real wastewater presented considerable fitting to the models with R² greater than 0.93. An artificial neural network model was developed to describe the removal of dyes in real wastewater with satisfactory fitting (R2 = 0.990).
Téléchargements
Références
ABOUA, K. N.; YOBOUET, Y. A.; YAO, K. B.; GONÉ, D. L.; TROKOUREY, A. Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. J. Environ Manage, v. 156, p. 10–14, 2015. DOI: https://doi.org/10.1016/j.jenvman.2015.03.006
AFOLABI, I. C.; POPOOLA, S. I.; BELLO, O. S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometr Intell Lab Syst, v. 203, p. 104053, 2020. DOI: https://doi.org/10.1016/j.chemolab.2020.104053
AHMAD, A.; RAFATULLAH, M.; VAKILI, M.; MOHD-SETAPAR, S. H. Equilibrium and kinetic studies of methyl orange adsorption onto chemically treated oil palm trunk powder. Environ Eng Manag J, v. 17, n. 12, p. 2933–2943, 2018. DOI: https://doi.org/10.30638/eemj.2018.294
AICHOUR, A.; ZAGHOUANE-BOUDIAF, H.; IBORRA, C. V.; POLO, M. S. Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. J. Mol. Liq., v. 256, p. 533–540, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.02.073
AMIN, N. K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard Mater, v. 165, n. 1–3, p. 52–62, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2008.09.067
ANDRADE, C. A.; ZAMBRANO-INTRIAGO, L. A.; OLIVEIRA, N. S.; VIEIRA, J. S.; QUIROZ-FERNÁNDEZ, L. S.; RODRÍGUEZ-DÍAZ, J. M. Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process. Water Air Soil Pollut, v. 231, n. 3, 2020. DOI: https://doi.org/10.1007/s11270-020-04473-6
AQUINO, R. V. S.; BARBOSA, A. A.; RIBEIRO, L. B.; OLIVEIRA, A. F. B.; SILVA, J. P.; AZOUBEL, P. M.; ROCHA, O. R. S. Degradation of leaf green food dye by heterogeneous photocatalysis with TiO2 over a polyethylene terephthalate plate. Chem Pap, v. 73, n. 10, p. 2501–2512, 2019. DOI: https://doi.org/10.1007/s11696-019-00804-y
BARBOSA, A. A.; AQUINO, R. V. S. DE; FLÁVIA, A.; OLIVEIRA, B.; DANTAS, R. F.; SILVA, J. P.; DUARTE, M. M. M. B.; OTIDENE, R. S. Development of a new photocatalytic reactor built from recyclable material for the treatment of textile industry effluents. Desalin Water Treat,v. 151, p. 82-92, 2019. DOI: https://doi.org/10.5004/dwt.2019.23905
BAUTISTA-TOLEDO, M. I.; RIVERA-UTRILLA, J.; MÉNDEZ-DÍAZ, J. D.; SÁNCHEZ-POLO, M.; CARRASCO-MARÍN, F. Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. J. Colloid Interface Sci., v. 418, p. 113–119, 2014. DOI: https://doi.org/10.1016/j.jcis.2013.12.001
BELLO, O. S.; AHMAD, M. A.; SEMIRE, B. Scavenging malachite green dye from aqueous solutions using pomelo (Citrus grandis) peels: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat, v. 56, n. 2, p. 521–535, 2015. DOI: https://doi.org/10.1080/19443994.2014.940387
BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. J Mach Learn Res, v. 13, p. 281–305, 2012.
BHATNAGAR, A.; KUMAR, E.; MINOCHA, A. K.; JEON, B. H.; SONG, H.; SEO, Y. C. Removal of anionic dyes from water using citrus limonum (lemon) peel: Equilibrium studies and kinetic modeling. Sep Sci Technol, v. 44, n. 2, p. 316–334, 2009. DOI: https://doi.org/10.1080/01496390802437461
BISHOP, C.M. Neural networks for pattern recognition, Claredon Press, Oxford, 1996. DOI: https://doi.org/10.1201/9781420050646.ptb6
BOLUDA-AGUILAR, M.; LÓPEZ-GÓMEZ, A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind Crops Prod, v. 41, n. 1, p. 188–197, 2013. DOI: https://doi.org/10.1016/j.indcrop.2012.04.031
BONATE, P.L Pharmacokinetic and Pharmacodynamic Modeling and Simulation. 2 ed. E New York, Springer, 2011 DOI: https://doi.org/10.1007/978-1-4419-9485-1
BRITO, M. J. P.; VELOSO, C. M.; SANTOS, L. S.; BONOMO, R. C. F.; FONTAN, R. DA C. I. Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technol., v. 339, p. 334–343, 2018. DOI: https://doi.org/10.1016/j.powtec.2018.08.017
CHIENG, H. I.; LIM, L. B. L.; PRIYANTHA, N. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: Equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol, v. 36, n. 1, p. 86–97, 2015. DOI: https://doi.org/10.1080/09593330.2014.938124
DEHGHANI, M. H.; SANAEI, D.; ALI, I.; BHATNAGAR, A. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J. Mol. Liq., v. 215, p. 671–679, 2016. DOI: https://doi.org/10.1016/j.molliq.2015.12.057
DENG, H.; ZHANG, G.; XU, X.; TAO, G.; DAI, J. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater., v. 182, n. 1–3, p. 217–224, 2010. DOI: https://doi.org/10.1016/j.jhazmat.2010.06.018
GE, M.; DU, M.; ZHENG, L.; WANG, B.; ZHOU, X.; JIA, Z.; HU, G.; JAHANGIR ALAM, S. M. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater. Mater. Chem. Phys., v. 192, p. 147–155, 2017. DOI: https://doi.org/10.1016/j.matchemphys.2017.01.063
GHIBATE, R.; SENHAJI, O.; TAOUIL, R. Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Studies in Chemical and Environmental Engineering, v. 3, n. November 2020, p. 100078, 2021. DOI: https://doi.org/10.1016/j.cscee.2020.100078
GISI, S. DE; LOFRANO, G.; GRASSI, M.; NOTARNICOLA, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain Mater Techno, v. 9, p. 10–40, 2016. DOI: https://doi.org/10.1016/j.susmat.2016.06.002
GOSWAMI, M.; PHUKAN, P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J. Environ. Chem. Eng., v. 5, n. 4, p. 3508–3517, 2017. DOI: https://doi.org/10.1016/j.jece.2017.07.016
HAJATIA, S.; GHAEDIB, M.; MAZAHERIB, H. Removal of methylene blue from aqueous solution by walnut carbon: optimization using response surface methodology. Desalin. Water Treat, v. 57, p. 3179-2193, 2016. DOI: https://doi.org/10.1080/19443994.2014.981217
HISAINDEE, S.; MEETANI, M. A.; RAUF, M. A. Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. Trac - Trend Anal Chem, v. 49, p. 31–44, 2013. DOI: https://doi.org/10.1016/j.trac.2013.03.011
HOLKAR, C. R.; JADHAV, A. J.; PINJARI, D. V.; MAHAMUNI, N. M.; PANDIT, A. B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag., v. 182, p. 351–366, 2016. DOI: https://doi.org/10.1016/j.jenvman.2016.07.090
JAWAD, A. H.; RASHID, R. A.; ISHAK, M. A. M.; ISMAIL, K. Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels . J. Taibah Univ. Sci., v. 12, n. 6, p. 809–819, 2018. DOI: https://doi.org/10.1080/16583655.2018.1519893
KHALED, A.; NEMR, A. EL; EL-SIKAILY, A.; ABDELWAHAB, O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. J. Hazard. Mater., v. 165, n. 1–3, p. 100–110, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2008.09.122
LI, Z.; WANG, G.; ZHAI, K.; HE, C.; LI, Q.; GUO, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. Colloids Surf A, v. 538, n. October 2017, p. 28–35, 2018. DOI: https://doi.org/10.1016/j.colsurfa.2017.10.046
LIANG, J.; NING, X. AN; KONG, M.; LIU, D.; WANG, G.; CAI, H.; SUN, J.; ZHANG, Y.; LU, X.; YUAN, Y. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environ. Pollut., v. 231, p. 115–122, 2017. DOI: https://doi.org/10.1016/j.envpol.2017.08.006
LOW, S. K.; TAN, M. C. Dye adsorption characteristic of ultrasound pre-treated pomelo peel. J. Environ. Chem. Eng., v. 6, n. 2, p. 3502–3509, 2018. DOI: https://doi.org/10.1016/j.jece.2018.05.013
LUTPI, N. A.; JAMIL, N. N.; ABDULLAH, C. K. K. C. K.; WONG, Y. S.; ONG, S. A.; IZHAR, T. N. T. Sorption of Methylene Blue and Acid Orange 7 onto Ananas Peels and Leaves Based Activated Carbon. Appl. Mech. Mater., v. 330, p. 112–116, 2013. DOI: https://doi.org/10.4028/www.scientific.net/AMM.330.112
MAGDY, Y. H.; ALTAHER, H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng., v. 6, n. 1, p. 834–841, 2018. DOI: https://doi.org/10.1016/j.jece.2018.01.009
MAHMOODI, N. M.; TAGHIZADEH, M.; TAGHIZADEH, A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J. Mol. Liq., v. 269, p. 217–228, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.07.108
MALASH, G. F.; EL-KHAIARY, M. I. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. J. Colloid Interface Sci., v. 348, n. 2, p. 537–545, 2010. DOI: https://doi.org/10.1016/j.jcis.2010.05.005
MAO, C.; IMTIAZ, S. A.; ZHANG, Y. Competitive adsorption of Ag (I) and Cu (II) by tripolyphosphate crosslinked chitosan beads. J. Appl. Polym. Sci., v. 132, n. 43, p. 1–11, 2015. DOI: https://doi.org/10.1002/app.42717
MEILI, L.; LINS, P. V. S.; COSTA, M. T.; ALMEIDA, R. L.; ABUD, A. K. S.; SOLETTI, J. I.; DOTTO, G. L.; TANABE, E. H.; SELLAOUI, L.; CARVALHO, S. H. V.; ERTO, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Prog. Biophys. Mol. Biol., v. 141, p. 60–71, 2019. DOI: https://doi.org/10.1016/j.pbiomolbio.2018.07.011
NASCIMENTO, G. E. DO; CAMPOS, N. F.; SILVA, J. J. DA; BARBOSA, C. M. B. DE M.; DUARTE, M. M. M. B. Adsorption of anionic dyes from an aqueous solution by banana peel and green coconut mesocarp. Desalin Water Treat, v. 57, n. 30, p. 14093–14108, 2016. DOI: https://doi.org/10.1080/19443994.2015.1063012
NASCIMENTO, G. E. DO; DUARTE, M. M. M. B.; CAMPOS, N. F.; ROCHA, O. R. S. DA; SILVA, V. L. DA. Adsorption of azo dyes using peanut hull and orange peel: A comparative study. Environ. Technol., v. 35, n. 11, p. 1436–1453, 2014. DOI: https://doi.org/10.1080/09593330.2013.870234
NASCIMENTO-JÚNIOR, W. J.; SILVA, M. G. C.; VIEIRA, M. Environmental Science and Pollution Research Competitive biosorption of Cu2 + and Ag + ions on brown macro-algae waste : Kinetic and ion-exchange studies. Environ. Sci. Pollut. Res., 2019. DOI: https://doi.org/10.1007/s11356-019-05471-w
NAYAK, S. S.; MIRGANE, N. A.; SHIVANKAR, V. S.; PATHADE, K. B.; WADHAWA, G. C. Adsorption of methylene blue dye over activated charcoal from the fruit peel of plant hydnocarpus pentandra. Materials Today: Proceedings, v. 37, n. Part 2, p. 2302–2305, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.07.728
PEREIRA, A. P. DOS S.; SILVA, M. H. P. DA; LIMA JÚNIOR, É. P.; PAULA, A. DOS S.; TOMMASINI, F. J. Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Mat. Res., v. 20, n. suppl 2, p. 411–420, 2017. DOI: https://doi.org/10.1590/1980-5373-mr-2017-0734
PEREIRA, M. F. R.; SOARES, S. F.; ÓRFÃO, J. J. M.; FIGUEIREDO, J. L. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon, v. 41, n. 4, p. 811–821, 2003. DOI: https://doi.org/10.1016/S0008-6223(02)00406-2
PESSÔA, T. S.; LIMA FERREIRA, L. E. DE; SILVA, M. P. DA; PEREIRA NETO, L. M.; NASCIMENTO, B. F. DO; FRAGA, T. J. M.; JAGUARIBE, E. F.; CAVALCANTI, J. V.; MOTTA SOBRINHO, M. A. DA. Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. J. Clean. Prod., v. 240, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.118047
PIRBAZARI, P. M.; KISOMI, B. F. Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin Water Treat, v. 63. p. 283–292, 2017. DOI: https://doi.org/10.5004/dwt.2017.20205
SAEED, A.; SHARIF, M.; IQBAL, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater., v. 179, n. 1–3, p. 564–572, 2010. DOI: https://doi.org/10.1016/j.jhazmat.2010.03.041
SAHIBZADA, K. I.; SAEED, A.; KALIM, I.; IQBAL, M. Ion-exchange mechanism in biosorption of Pb2+ ions from contaminated water by banana stalk waste. Environ Eng Manag J, v. 15, n. 12, p. 2741–2751, 2016. DOI: https://doi.org/10.30638/eemj.2016.301
SANDOVAL, A.; HERNÁNDEZ-VENTURA, C.; KLIMOVA, T. E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel, v. 198, p. 22–30, 2017. DOI: https://doi.org/10.1016/j.fuel.2016.11.007
SHAKOOR, S.; NASAR, A. Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw. Sustain. Dev., v. 7, n. March, p. 30–38, 2018. DOI: https://doi.org/10.1016/j.gsd.2018.03.004
SHARMA, A.; SYED, Z.; BRIGHU, U.; GUPTA, A. B.; RAM, C. Adsorption of textile wastewater on alkali-activated sand. J. Clean. Prod, v. 220, p. 23–32, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.01.236
SHARMA, K.; VYAS, R. K.; SINGH, K.; DALAI, A. K. Degradation of a synthetic binary dye mixture using reactive adsorption: Experimental and modeling studies. J. Environ. Chem. Eng., v. 6, n. 5, p. 5732–5743, 2018. DOI: https://doi.org/10.1016/j.jece.2018.08.069
SILVA, E. O. DA; SANTOS, V. D. DOS; ARAUJO, E. B. DE; GUTERRES, F. P.; ZOTTIS, R.; FLORES, W. H.; ALMEIDA, A. R. F. DE. Removal of methylene blue from aqueous solution by ryegrass straw. Int J Environ Sci Technol, v. 17, n. 8, p. 3723–3740, 2020. DOI: https://doi.org/10.1007/s13762-020-02718-9
SOLOMONS, T.W.G., FRYHLE, C.B. Organic Chemistry, 10. ed., New York, John Wiley & Sons, 2012.
SUDAMALLA, P.; PICHIAH, S.; MANICKAM, M. Responses of surface modeling and optimization of Brilliant Green adsorption by adsorbent prepared from Citrus limetta peel. Desalin Water Treat, v. 50, n. 1–3, p. 367–375, 2012. DOI: https://doi.org/10.1080/19443994.2012.720119
TANG, Y.; ZHAO, Y.; LIN, T.; LI, Y.; ZHOU, R.; PENG, Y. Adsorption performance and mechanism of methylene blue by H3PO4- modified corn stalks. J. Environ. Chem. Eng., v. 7, n. 6, p. 103398, 2019. DOI: https://doi.org/10.1016/j.jece.2019.103398
TAYLOR, P.; RAMANA, D. K. V.; MIN, K. Desalination and Water Treatment Activated carbon produced from pigeon peas hulls waste as a low-cost agro-waste adsorbent for Cu ( II ) and Cd ( II ) removal. n. May, p. 37–41, 2015.
THOMMES, M.; KANEKO, K.; NEIMARK, A. V.; OLIVIER, J. P.; RODRIGUEZ-REINOSO, F.; ROUQUEROL, J.; SING, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., v. 87, n. 9–10, p. 1051–1069, 2015. DOI: https://doi.org/10.1515/pac-2014-1117
VIEIRA, A.P., SANTANA, S. A. A., BEZERRA, C. W. B., SILVA, H. A. S., CHAVES, J. A. P., MELO, J. C. P. DE, EDSON, C., FILHO, S., AND AIROLDI, C. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. v. 166, p. 1272–1278, 2009. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.043
WANG, X.; JIANG, C.; HOU, B.; WANG, Y.; HAO, C.; WU, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere, v. 206, p. 587–596, 2018. DOI: https://doi.org/10.1016/j.chemosphere.2018.04.183
WEBER, W.J.; MORRIS, J.C. Kinetics of adsorption on carbon from solutions. J Sanit Eng Div, v. 89, p. 31-60, 1963. DOI: https://doi.org/10.1061/JSEDAI.0000430
YAGUB, M. T.; SEN, T. K.; AFROZE, S.; ANG, H. M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci., v. 209, p. 172–184, 2014. DOI: https://doi.org/10.1016/j.cis.2014.04.002
ZHANG, J.; GAO, J.; CHEN, Y.; HAO, X.; JIN, X. Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys., v. 7, p. 1628–1633, 2017. DOI: https://doi.org/10.1016/j.rinp.2017.04.028
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 2022

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.
DECLARATION
