Biosorption textile wastewater employing lemon peel derivatives: data analysis and kinetic modeling

Authors

DOI:

https://doi.org/10.5902/2236117065265

Keywords:

Agro-industrial waste, Binary biosorption, Lemon peel, Neural network, Textilesynthetic dyes, Wastewater treatment

Abstract

The present work aimed to evaluate the efficiency of an agro-industrial waste biosorbent in the removal of real textile wastewater. A model sample with methylene blue and remazol golden yellow at equimolar proportions was prepared to be treated with in natura, carbonized, and activated lemon peel beads. Activated biosorbent demonstrated superior capacity and removal rates. Characterization analyses investigated the morphology and physico-chemical properties of the biomaterial. The pH (2.0) and dosage (1.6 g.L-1) studies were carried out to select parameters for further studies. In kinetic assays, methylene blue equilibrium was reached faster than remazol golden yellow RNL. The analyses of fitting parameters indicated Elovich kinetic model to describe biosorption of the yellow dye while pseudo-first-order fit best to the blue dye biosorption data. The intraparticle diffusion model indicated that more than one step may limit biosorption kinetics. In the treatment of real textile wastewater, 94.22% of dyes removal was attained after 360 minutes of operation at the selected operational conditions. Kinetics of adsorption of real wastewater presented considerable fitting to the models with R² greater than 0.93. An artificial neural network model was developed to describe the removal of dyes in real wastewater with satisfactory fitting (R2 = 0.990).

 

Downloads

Download data is not yet available.

Author Biographies

Naiana Santos da Cruz Santana Neves, Universidade Federal de Pernambuco, Recife, PE

Engenheira Química pela UFPE (2016). Mestre em Engenharia Química pela UFPE (2019). Atualmente, é doutoranda pelo Programa de Pós-Graduação em Engenharia Química da UFPE.

Ramon Vinícius Santos de Aquino, Universidade Federal de Pernambuco, Recife, PE

Bacharel em Química Industrial pela Universidade Federal de Pernambuco (UFPE) e Mestre em Engenharia Química pelo PPGEQ-UFPE. 

Ingrid Larissa da Silva Santana, Universidade Federal de Pernambuco, Recife, PE

Engenheira Química pela UFPE (2019). Mestre em Engenharia Química pela UFPE (2022). Atualmente, é doutoranda pelo Programa de Pós-Graduação em Engenharia Química da UFPE.

Welenilton José do Nascimento Júnior, Universidade Federal de Pernambuco, Recife, PE

Bacharel em Química Industrial pela Universidade Federal de Pernambuco (2017) com período sanduíche em Cardiff University (Cardiff, Reino Unido) no Bacharel em Química. Mestre em Engenharia Química pela Universidade Estadual de Campinas (2019). Doutorando em Engenharia Química no Departamento de Engenharia Química (UFPE). Atua como Professor Assistente no Departamento de Química Fundamental (UFPE) na área de Química Geral.

Ada Azevedo Barbosa, Universidade Federal de Pernambuco, Recife, PE

Engenheira de Alimentos pela UESB (2011). Mestre em Engenharia de Alimentos pela UESB (2013). Engenheira Química pela UNINASSAU (2019). Doutora em Engenharia Química pela UFPE (2019).

Rafaela Ferreira Carvalho, Universidade Federal de Pernambuco, Recife, PE

Atualmente, graduanda em Químico Industrial pela UFPE.

Josivan Pedro Silva, Universidade Federal de Pernambuco, Recife, PE

Engenheiro Químico pela UFPE (2010). Mestre em Engenharia Química pela UFPE (2013). Doutor em Engenharia Química pela UFPE (2018).

Mohand Benachour, Universidade Federal de Pernambuco, Recife, PE

Engenheiro Químico pela Ecole Nationale Polytechnique D Alger (1984). Mestre pela Universitè de Technologie de Compiègne (1985). Doutor em Génie Des Procédés pelo Institut National Polytéchnique de Lorraine (1990). Atualmente é professor titular da Universidade Federal de Pernambuco.

Otidene Rossiter Sá da Rocha, Universidade Federal de Pernambuco, Recife, PE

Engenheira Química pela UFPE (2004), Mestre em Engenharia Química pela UFRN (2007) e Doutora em Engenharia Química pela UFRN (2010). Atualmente é professor adjunto do Departamento de Engenharia Química da UFPE.

 

References

ABOUA, K. N.; YOBOUET, Y. A.; YAO, K. B.; GONÉ, D. L.; TROKOUREY, A. Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. J. Environ Manage, v. 156, p. 10–14, 2015.

AFOLABI, I. C.; POPOOLA, S. I.; BELLO, O. S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometr Intell Lab Syst, v. 203, p. 104053, 2020.

AHMAD, A.; RAFATULLAH, M.; VAKILI, M.; MOHD-SETAPAR, S. H. Equilibrium and kinetic studies of methyl orange adsorption onto chemically treated oil palm trunk powder. Environ Eng Manag J, v. 17, n. 12, p. 2933–2943, 2018.

AICHOUR, A.; ZAGHOUANE-BOUDIAF, H.; IBORRA, C. V.; POLO, M. S. Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. J. Mol. Liq., v. 256, p. 533–540, 2018.

AMIN, N. K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Hazard Mater, v. 165, n. 1–3, p. 52–62, 2009.

ANDRADE, C. A.; ZAMBRANO-INTRIAGO, L. A.; OLIVEIRA, N. S.; VIEIRA, J. S.; QUIROZ-FERNÁNDEZ, L. S.; RODRÍGUEZ-DÍAZ, J. M. Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process. Water Air Soil Pollut, v. 231, n. 3, 2020.

AQUINO, R. V. S.; BARBOSA, A. A.; RIBEIRO, L. B.; OLIVEIRA, A. F. B.; SILVA, J. P.; AZOUBEL, P. M.; ROCHA, O. R. S. Degradation of leaf green food dye by heterogeneous photocatalysis with TiO2 over a polyethylene terephthalate plate. Chem Pap, v. 73, n. 10, p. 2501–2512, 2019.

BARBOSA, A. A.; AQUINO, R. V. S. DE; FLÁVIA, A.; OLIVEIRA, B.; DANTAS, R. F.; SILVA, J. P.; DUARTE, M. M. M. B.; OTIDENE, R. S. Development of a new photocatalytic reactor built from recyclable material for the treatment of textile industry effluents. Desalin Water Treat,v. 151, p. 82-92, 2019.

BAUTISTA-TOLEDO, M. I.; RIVERA-UTRILLA, J.; MÉNDEZ-DÍAZ, J. D.; SÁNCHEZ-POLO, M.; CARRASCO-MARÍN, F. Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. J. Colloid Interface Sci., v. 418, p. 113–119, 2014.

BELLO, O. S.; AHMAD, M. A.; SEMIRE, B. Scavenging malachite green dye from aqueous solutions using pomelo (Citrus grandis) peels: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat, v. 56, n. 2, p. 521–535, 2015.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. J Mach Learn Res, v. 13, p. 281–305, 2012.

BHATNAGAR, A.; KUMAR, E.; MINOCHA, A. K.; JEON, B. H.; SONG, H.; SEO, Y. C. Removal of anionic dyes from water using citrus limonum (lemon) peel: Equilibrium studies and kinetic modeling. Sep Sci Technol, v. 44, n. 2, p. 316–334, 2009.

BISHOP, C.M. Neural networks for pattern recognition, Claredon Press, Oxford, 1996.

BOLUDA-AGUILAR, M.; LÓPEZ-GÓMEZ, A. Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind Crops Prod, v. 41, n. 1, p. 188–197, 2013.

BONATE, P.L Pharmacokinetic and Pharmacodynamic Modeling and Simulation. 2 ed. E New York, Springer, 2011

BRITO, M. J. P.; VELOSO, C. M.; SANTOS, L. S.; BONOMO, R. C. F.; FONTAN, R. DA C. I. Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technol., v. 339, p. 334–343, 2018.

CHIENG, H. I.; LIM, L. B. L.; PRIYANTHA, N. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: Equilibrium, thermodynamics, kinetics and regeneration studies. Environ Technol, v. 36, n. 1, p. 86–97, 2015.

DEHGHANI, M. H.; SANAEI, D.; ALI, I.; BHATNAGAR, A. Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies. J. Mol. Liq., v. 215, p. 671–679, 2016.

DENG, H.; ZHANG, G.; XU, X.; TAO, G.; DAI, J. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J. Hazard. Mater., v. 182, n. 1–3, p. 217–224, 2010.

GE, M.; DU, M.; ZHENG, L.; WANG, B.; ZHOU, X.; JIA, Z.; HU, G.; JAHANGIR ALAM, S. M. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater. Mater. Chem. Phys., v. 192, p. 147–155, 2017.

GHIBATE, R.; SENHAJI, O.; TAOUIL, R. Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Studies in Chemical and Environmental Engineering, v. 3, n. November 2020, p. 100078, 2021.

GISI, S. DE; LOFRANO, G.; GRASSI, M.; NOTARNICOLA, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain Mater Techno, v. 9, p. 10–40, 2016.

GOSWAMI, M.; PHUKAN, P. Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. J. Environ. Chem. Eng., v. 5, n. 4, p. 3508–3517, 2017.

HAJATIA, S.; GHAEDIB, M.; MAZAHERIB, H. Removal of methylene blue from aqueous solution by walnut carbon: optimization using response surface methodology. Desalin. Water Treat, v. 57, p. 3179-2193, 2016.

HISAINDEE, S.; MEETANI, M. A.; RAUF, M. A. Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. Trac - Trend Anal Chem, v. 49, p. 31–44, 2013.

HOLKAR, C. R.; JADHAV, A. J.; PINJARI, D. V.; MAHAMUNI, N. M.; PANDIT, A. B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag., v. 182, p. 351–366, 2016.

JAWAD, A. H.; RASHID, R. A.; ISHAK, M. A. M.; ISMAIL, K. Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels . J. Taibah Univ. Sci., v. 12, n. 6, p. 809–819, 2018.

KHALED, A.; NEMR, A. EL; EL-SIKAILY, A.; ABDELWAHAB, O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. J. Hazard. Mater., v. 165, n. 1–3, p. 100–110, 2009.

LI, Z.; WANG, G.; ZHAI, K.; HE, C.; LI, Q.; GUO, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. Colloids Surf A, v. 538, n. October 2017, p. 28–35, 2018.

LIANG, J.; NING, X. AN; KONG, M.; LIU, D.; WANG, G.; CAI, H.; SUN, J.; ZHANG, Y.; LU, X.; YUAN, Y. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environ. Pollut., v. 231, p. 115–122, 2017.

LOW, S. K.; TAN, M. C. Dye adsorption characteristic of ultrasound pre-treated pomelo peel. J. Environ. Chem. Eng., v. 6, n. 2, p. 3502–3509, 2018.

LUTPI, N. A.; JAMIL, N. N.; ABDULLAH, C. K. K. C. K.; WONG, Y. S.; ONG, S. A.; IZHAR, T. N. T. Sorption of Methylene Blue and Acid Orange 7 onto Ananas Peels and Leaves Based Activated Carbon. Appl. Mech. Mater., v. 330, p. 112–116, 2013.

MAGDY, Y. H.; ALTAHER, H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng., v. 6, n. 1, p. 834–841, 2018.

MAHMOODI, N. M.; TAGHIZADEH, M.; TAGHIZADEH, A. Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: Preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems. J. Mol. Liq., v. 269, p. 217–228, 2018.

MALASH, G. F.; EL-KHAIARY, M. I. Methylene blue adsorption by the waste of Abu-Tartour phosphate rock. J. Colloid Interface Sci., v. 348, n. 2, p. 537–545, 2010.

MAO, C.; IMTIAZ, S. A.; ZHANG, Y. Competitive adsorption of Ag (I) and Cu (II) by tripolyphosphate crosslinked chitosan beads. J. Appl. Polym. Sci., v. 132, n. 43, p. 1–11, 2015.

MEILI, L.; LINS, P. V. S.; COSTA, M. T.; ALMEIDA, R. L.; ABUD, A. K. S.; SOLETTI, J. I.; DOTTO, G. L.; TANABE, E. H.; SELLAOUI, L.; CARVALHO, S. H. V.; ERTO, A. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Prog. Biophys. Mol. Biol., v. 141, p. 60–71, 2019.

NASCIMENTO, G. E. DO; CAMPOS, N. F.; SILVA, J. J. DA; BARBOSA, C. M. B. DE M.; DUARTE, M. M. M. B. Adsorption of anionic dyes from an aqueous solution by banana peel and green coconut mesocarp. Desalin Water Treat, v. 57, n. 30, p. 14093–14108, 2016.

NASCIMENTO, G. E. DO; DUARTE, M. M. M. B.; CAMPOS, N. F.; ROCHA, O. R. S. DA; SILVA, V. L. DA. Adsorption of azo dyes using peanut hull and orange peel: A comparative study. Environ. Technol., v. 35, n. 11, p. 1436–1453, 2014.

NASCIMENTO-JÚNIOR, W. J.; SILVA, M. G. C.; VIEIRA, M. Environmental Science and Pollution Research Competitive biosorption of Cu2 + and Ag + ions on brown macro-algae waste : Kinetic and ion-exchange studies. Environ. Sci. Pollut. Res., 2019.

NAYAK, S. S.; MIRGANE, N. A.; SHIVANKAR, V. S.; PATHADE, K. B.; WADHAWA, G. C. Adsorption of methylene blue dye over activated charcoal from the fruit peel of plant hydnocarpus pentandra. Materials Today: Proceedings, v. 37, n. Part 2, p. 2302–2305, 2020.

PEREIRA, A. P. DOS S.; SILVA, M. H. P. DA; LIMA JÚNIOR, É. P.; PAULA, A. DOS S.; TOMMASINI, F. J. Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste. Mat. Res., v. 20, n. suppl 2, p. 411–420, 2017.

PEREIRA, M. F. R.; SOARES, S. F.; ÓRFÃO, J. J. M.; FIGUEIREDO, J. L. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon, v. 41, n. 4, p. 811–821, 2003.

PESSÔA, T. S.; LIMA FERREIRA, L. E. DE; SILVA, M. P. DA; PEREIRA NETO, L. M.; NASCIMENTO, B. F. DO; FRAGA, T. J. M.; JAGUARIBE, E. F.; CAVALCANTI, J. V.; MOTTA SOBRINHO, M. A. DA. Açaí waste beneficing by gasification process and its employment in the treatment of synthetic and raw textile wastewater. J. Clean. Prod., v. 240, 2019.

PIRBAZARI, P. M.; KISOMI, B. F. Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue. Desalin Water Treat, v. 63. p. 283–292, 2017.

SAEED, A.; SHARIF, M.; IQBAL, M. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption. J. Hazard. Mater., v. 179, n. 1–3, p. 564–572, 2010.

SAHIBZADA, K. I.; SAEED, A.; KALIM, I.; IQBAL, M. Ion-exchange mechanism in biosorption of Pb2+ ions from contaminated water by banana stalk waste. Environ Eng Manag J, v. 15, n. 12, p. 2741–2751, 2016.

SANDOVAL, A.; HERNÁNDEZ-VENTURA, C.; KLIMOVA, T. E. Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel, v. 198, p. 22–30, 2017.

SHAKOOR, S.; NASAR, A. Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw. Sustain. Dev., v. 7, n. March, p. 30–38, 2018.

SHARMA, A.; SYED, Z.; BRIGHU, U.; GUPTA, A. B.; RAM, C. Adsorption of textile wastewater on alkali-activated sand. J. Clean. Prod, v. 220, p. 23–32, 2019.

SHARMA, K.; VYAS, R. K.; SINGH, K.; DALAI, A. K. Degradation of a synthetic binary dye mixture using reactive adsorption: Experimental and modeling studies. J. Environ. Chem. Eng., v. 6, n. 5, p. 5732–5743, 2018.

SILVA, E. O. DA; SANTOS, V. D. DOS; ARAUJO, E. B. DE; GUTERRES, F. P.; ZOTTIS, R.; FLORES, W. H.; ALMEIDA, A. R. F. DE. Removal of methylene blue from aqueous solution by ryegrass straw. Int J Environ Sci Technol, v. 17, n. 8, p. 3723–3740, 2020.

SOLOMONS, T.W.G., FRYHLE, C.B. Organic Chemistry, 10. ed., New York, John Wiley & Sons, 2012.

SUDAMALLA, P.; PICHIAH, S.; MANICKAM, M. Responses of surface modeling and optimization of Brilliant Green adsorption by adsorbent prepared from Citrus limetta peel. Desalin Water Treat, v. 50, n. 1–3, p. 367–375, 2012.

TANG, Y.; ZHAO, Y.; LIN, T.; LI, Y.; ZHOU, R.; PENG, Y. Adsorption performance and mechanism of methylene blue by H3PO4- modified corn stalks. J. Environ. Chem. Eng., v. 7, n. 6, p. 103398, 2019.

TAYLOR, P.; RAMANA, D. K. V.; MIN, K. Desalination and Water Treatment Activated carbon produced from pigeon peas hulls waste as a low-cost agro-waste adsorbent for Cu ( II ) and Cd ( II ) removal. n. May, p. 37–41, 2015.

THOMMES, M.; KANEKO, K.; NEIMARK, A. V.; OLIVIER, J. P.; RODRIGUEZ-REINOSO, F.; ROUQUEROL, J.; SING, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., v. 87, n. 9–10, p. 1051–1069, 2015.

VIEIRA, A.P., SANTANA, S. A. A., BEZERRA, C. W. B., SILVA, H. A. S., CHAVES, J. A. P., MELO, J. C. P. DE, EDSON, C., FILHO, S., AND AIROLDI, C. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. v. 166, p. 1272–1278, 2009.

WANG, X.; JIANG, C.; HOU, B.; WANG, Y.; HAO, C.; WU, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere, v. 206, p. 587–596, 2018.

WEBER, W.J.; MORRIS, J.C. Kinetics of adsorption on carbon from solutions. J Sanit Eng Div, v. 89, p. 31-60, 1963.

YAGUB, M. T.; SEN, T. K.; AFROZE, S.; ANG, H. M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci., v. 209, p. 172–184, 2014.

ZHANG, J.; GAO, J.; CHEN, Y.; HAO, X.; JIN, X. Characterization, preparation, and reaction mechanism of hemp stem based activated carbon. Results Phys., v. 7, p. 1628–1633, 2017.

Downloads

Published

2022-12-26

How to Cite

Neves, N. S. da C. S., Aquino, R. V. S. de, Santana, I. L. da S., Nascimento Júnior, W. J. do, Barbosa, A. A., Carvalho, R. F., Silva, J. P., Benachour, M., & Rocha, O. R. S. da. (2022). Biosorption textile wastewater employing lemon peel derivatives: data analysis and kinetic modeling. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 26, e2. https://doi.org/10.5902/2236117065265

Issue

Section

ENVIRONMENTAL THECNOLOGY

Most read articles by the same author(s)