Optimization of a methodology for simultaneous determination of four antidepressants present in fresh water by high efficiency liquid chromatography

Auteurs-es

DOI :

https://doi.org/10.5902/2236117062663

Mots-clés :

Emerging pollutants, Analytical validation, Monitoring

Résumé

The occurrence of emerging contaminants is a growing concern in the environmental scenario due to their potential risks to ecosystems. The technologies employed in the treatment of sewage in Brazil are not efficient in removing micropollutants, especially persistent ones. Antidepressants (a class of drugs belonging to emerging contaminants) can reach the environment through the disposal of domestic and industrial effluents. These substances were detected in studies with surface waters, being able to cause changes and accumulate in aquatic organisms. The occurrence and impacts of this class of pollutant are still poorly studied in the country. Thus, there is a need to carry out environmental monitoring. To meet such a goal, scientific advances must be developed, especially those related to the development of analytical skills, equipment, and methods with the necessary sensitivity to research in the different sources of contamination. Accordingly, with the development of analytical techniques, it is possible to determine antidepressant drugs in environmental and / or biological matrices in increasingly small concentrations. Consequently, optimization of current techniques and proposing new ones are crucial before any other actions. The aim of this study was to validate a rapid methodology for determining the presence of four antidepressants - fluoxetine, citalopram, venlafaxine, and sertraline - in fresh water through high performance liquid chromatography. The method involved solid-phase extraction (SPE) with C18 cartridge and quantification by high performance liquid chromatography coupled to a diode array detector with C8 column. No chromatographic interference was observed in the retention time of the antidepressants in this study at the selected wavelength of 235 nm. The study matrix did not interfere in the analyses. Linearity was adequate for the range from 0.5 to 10 µg mL-1, with limits of detection and quantification of 0.03 to 0.09 µg mL-1 and 0.10 to 0.27 µg mL-1 respectively. Accuracy was assessed by testing sample fortification at three concentration levels and estimated by relative standard deviation (RSD). RSD values below 15% were obtained. The recovery interval ranged from 49 to 102%. The analytical method was validated and considered satisfactory for the simultaneous determination of antidepressants in freshwater samples using a C8 column.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Patrícia Alexandre Evagelista, University of Sao Paulo, São Paulo, SP

Mestranda do Programa de Pós-Graduação em Ciências no Centro de Energia Nuclear na Agricultura

Franz Zirena Vilca, National University of Moquegua, Moquegua

Possui graduação em Engenharia Agronômica pela Universidad Nacional del Altiplano (1999), mestrado en Agricultura Andina na especialidade de Agroecología pela Universidad Nacional del Altiplano, doutorado em Ciências na área de concentração de Ecologia Aplicada pela Universidade de São Paulo (2012)

Rodrigo Floriano Pimpinato, University of Sao Paulo, São Paulo, SP

Técnico em Química, Tecnólogo em Processos Químicos, Bacharel em Química. Atualmente é Técnico do Laboratório de Ecotoxicologia do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (CENA-USP)

Valdemar Luiz Tornisielo, University of Sao Paulo, São Paulo, SP

Doutor em Tecnologia Nuclear

Références

ANVISA. Agência Nacional de Vigilância Sanitária. Resolução da diretoria colegiada n.166, de 24 de julho de 2017. Dispõe sobre a validação de métodos analíticos e dá outras providências.

ANVISA. Agência Nacional de Vigilância Sanitária. Resolução RE nº 899, de 29 de maio de 2003. Guia para Validação de Métodos Analíticos e Bioanalíticos.

AOAC. Association of Official Analytical Chemists. Official methods of analysis of AOAC International. Appendix F: Guidelines for Standard Method Performance Requirements. 2016. p. 1-16

BARCELÓ, D. Pharmaceutical-residue analysis. Trends in Analytical Chemistry. 2007;2(6):454-455.

CAI, M. Q.; WANG, R.; FENG, L.; ZHANG, L. Q. Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatography-triple quadrupole mass spectrometer in Beijing, China Environmental Science Pollution Research 2015;22:1854-1867.

COELHO, M. M.; RIBEIRO, A. R. L.; SOUSA, J. C. G.; RIBEIRO, C.; FERNANDES, C.; SILVA, A. M. T.; et al. Dual enantioselective LC–MS/MS method to analyse chiral drugs in surface water: Monitoring in Douro River estuary. Journal of Pharmaceutical and Biomedical Analysis. 2019;170(5):89-101.

COLAÇO, R.; GOMES, E. C.; PERALTA-ZAMORA, P. G. Poluição por resíduos contendo compostos farmaceuticamente ativos: aspectos ambientais, geração a partir dos esgotos domésticos e a situação do Brasil. Revista de Ciências Farmacêuticas Básica e Aplicada. 2015;35(4): 539-548.

COSTA JUNIOR, I. L.; PLETSCH, A. L.; TORRES, Y. R. Ocorrência de fármacos antidepressivos no meio ambiente- revisão. Revista Virtual de Química. 2014;6(5):1408-1431.

FERNANDES, M. J.; PAIGA, P.; SILVA, A.; LLAGUNO, C. P.; CARVALHO, M.; VÁZQUEZ, F. M.; DELERUE-MATOS, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere. 2020;239:124729.

GAGO-FERRERO, P.; BOROVA, V.; DASENAKI, M. E.; TAUHOMAIDIS, NU S. Simultaneous determination of 148 pharmaceuticals and illicit drugs in sewage sludge based on ultrasound-assisted extraction and liquid chromatography-tandem mass spectrometry. Analytical and bioanalytical chemistry. 2015; 407: 4287–4297.

GIEBUŁTOWICZ, J.; NAŁĘCZ-JAWECKI, G. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicology and Environmental Safety. 2014;104:103-109.

GROS, M.; MOZAZ, R.; BARCELÓ, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry J. Journal of Chromatography A. 2012;1248:104-121.

HALL, T.; SMUKSTE, I.; BRESCIANO, K. R.; WANG, Y.; MCKEARN, D.; SAVAGE, R. E. Identifying and Overcoming Matrix Effects in Drug Discovery and Development. Tandem Mass Spectrometry – Applications and Principles. Jeevan K. Prasain, IntechOpen. 2012, p. 389-420.

LIOUPI, A.; KABIR, A.; FURTON, K. G.; SAMANIDOU, V. Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. Journal of Chromatography B. 2019;1118:171-179.

LOLIC, A.; PAIGA, P.; SANTOS, L. H. M. L. M.; RAMOS, S.; CORREIA, M.; DELERUE-MATOS, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk Sci. Total Environ. 2015;508:240-250.

REIS, E. O.; FOUREAUX, A. F. S.; RODRIGUES, J. S.; MOREIRA, V. R.; LEBRON, Y. A. R.; SANTOS, L. V. S.; et al. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking wáter treatment plants. Environmental Pollution. 2019;250:773-781.

MA, R.; QU, H.; WANG, B.; WANG, F.; YU, G. Widespread monitoring of chiral pharmaceuticals in urban rivers reveals stereospecific occurrence and transformation. Environment International. 2020;138:105657.

MADUREIRA, T. V.; ROCHA, M. J.; CASS, Q. B.; TIRITAN, M. E. Development and optimization of a HPLC-DAD method for the determination of diverse pharmaceuticals in estuarine surface waters. Journal of Chromatographic Science. 2010;48(3):176-82.

MILLER, J. N.; MILLER, J. C. Statistics and Chemometrics for Analytical Chemistry, 6st ed., Pearson: Harlow, 2010.

MONTEIRO, S. C.; BOXALL, A. B. A. Occurrence and fate of human pharmaceuticals in the environment. Reviews of Environmental Contamination and Toxicology. 2010;202:53–154.

OCDE - Organização para a Cooperação e Desenvolvimento Econômico. Health at a Glance; 2013. p. 123-55.

PAIGA, P.; SANTOS, L. H. M. L. M.; DELERUE-MATOS, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis. 2017;135:75-86.

PENG, X.; TAN, J.; TANG, C.; YU, Y.; WANG, Z. Multiresidue determination of fluoroquinolone, sulfonamide,trimethoprim, and chloramphenicol antibiotics in urban watersin China. Environmental Toxicology and Chemistry. 2008;27(1):73–79.

PEREIRA, A. M. P. T.; SILVA, L. J. G.; LINO, C. M.; MEISEL, L. M.; PENA, A. Assessing environmental risk of pharmaceuticals in Portugal: an approach for the selection of the Portuguese monitoring stations in line with directive 2013/39/EU Chemosphere. 2016;144:2507-2515.

PINHO, G. P.; SILVÉRIO, F. O.; NEVES, A. A.; QUEIROZ, M. E. L. R.; STARLING, M. A. V. M. Influência dos constituintes químicos dos extratos de diferentes matrizes na resposta cromatográfica de agrotóxicos. Química Nova. 2010;33(4).

REIS, E. O.; FOUREAUX, A. N. S.; RODRIGUES, J. S.; MOREIRA, V. R.; LEBRON, Y. A. R.; SANTOS, L. V. S.; et al. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environmental Pollution. 2019;250:773-781.

SANTOS, L. H. M. L. M.; GROS, M.; RODRIGUEZ-MOZAZ, S.; DELERUE-MATOS, C.; PENA, A.; BARCELÓ, D.; et al. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Science of the Total Environment. 2013; 461–462:302-316.

SCHLÜSENER, M. P.; HARDENBICKER, P.; NILSON, E.; SCHULZ, M.; VIERGUTZ, C.; TERNES, T. A. Occurrence of venlafaxine, other antidepressants and selected metabolites in the Rhine catchment in the face of climate change. Environmental Pollution. 2015;196:247-256.

SIM, W. J.; LEE, J. W.; OH, J. E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution. 2010;158(5):1938-47.

VERLICCHI, P.; AL AUKIDY, M.; ZAMBELLO, E. Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review. The Science of the Total Environment. 2012;429:123-155.

VON SPERLING, M. Princípios do tratamento biológico das águas residuárias: introdução à qualidade das águas e ao tratamento de esgotos. 3st ed. Belo Horizonte: UFMG; 2005.

WILLE, S. M. R.; COOREMAN, S. G.; NEELS, H. M.; LAMBERT, W. E. E. Relevant issues in the monitoring and the toxicology of antidepressants. Critical Reviews in Clinical Laboratory Sciences. 2008;45(1):25-89.

Publié-e

2020-12-04 — Mis(e) à jour 2022-07-28

Versions

Comment citer

Evagelista, P. A., Vilca, F. Z., Pimpinato, R. F., & Tornisielo, V. L. (2022). Optimization of a methodology for simultaneous determination of four antidepressants present in fresh water by high efficiency liquid chromatography. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e8. https://doi.org/10.5902/2236117062663 (Original work published 4 décembre 2020)

Articles similaires

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.