Gasification system coupled to fixed bed column aiming adsorption of H2S from biomass
DOI :
https://doi.org/10.5902/2236117037685Mots-clés :
Biomass, Fuel gas, EnergyRésumé
An overview of the characterization of biomass sugarcane bagasse, peanut shell and black grape peel for application of biofuels, based on laboratory tests. Initially a general explanation of the development of gasification for the production of synthetic natural gas from alternative sources, such as biomass, which can be converted from solid to gaseous fuel, passing through a process of purification through adsorption in a fixed bed system. The adsorbent was evaluated through BET, BJH, pH, humidity and ignition loss analyzes. The results of the combined gasification capacity of the adsorption column for the cleaning of the produced fuel gas and adsorption of the H2S were analyzed. The biomass results were discussed in terms of the energy potential as fuel based on the principal component analysis (PCA).
Téléchargements
Références
Bowe, M.J.; Peat, R.; West, D.J.; Hawker P. Gas-to-liquid technology. Google Patents, 2015.
Bao, B.; El-Halwagi, M.M.; Elbashir, N.O. Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Process Technology, 2010.
Aguiar, E.F.S. Biocombustíveis e a Refinaria do Futuro. Escola de Química/UFRJ e CENPES/PETROBRAS, 2011.
Bizzo, W.A.; Lenço, P.C.; Carvalho, D.J.; Veiga, J.R.S.The generation of residual biomass during the production of bio-ethanol from sugar cane, its characterization and its use in energy production. Faculty of Mechanical Engineering, University of Campinas – UNICAMP, 13083-970 Campinas, SP, Brazil, 2014.
Messina, L.I.G; Bonelli, P.R.; Cukierman, A.L. Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2620, C1428BGA Buenos Aires, Argentina, 2015.
Bocci, E.; Sisini, M.; Moneti, M.; Vecchione, L.; Di Carlo, A.; Villarini, M. State of art of small scale biomass gasification power systems: a review of the different typologies. Engineering Faculty, Energy Department, Marconi University, Rome 00143, Italy, 2014.
Mckendry, P. Energy production from biomass (part 1): overview of biomass. Bioresource Technology, v.83, p.37–46, 2002a.
Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews, v.15, p.2262–2289, 2011.
Andrade, R.V. Estado da Arte da Gaseificação de Biomassa para Geração de Eletricidade e Produção de Combustíveis. Universidade Federal de Itajubá, Brasil, 2010.
Higman, C.; Burgt, M. Gasification. United Kingdom: Elsevier, 2 ed., 435p, 2008.
Ronkkonen, H.; Simell, P.; Niemela, M.; Krause, O. Precious metal catalysts in the clean-up of biomass gasification gas part 2: Performance and sulfur tolerance of rhodium based catalysts. Aalto University, School of Science and Technology, Department of Biotechnology and Chemical Technology. Technical Research Centre of Finland, Journal Elsevier, Finland, 2011.
Nascimento, R.F.; Lima, A.C.A.; Vidal, C.B.; Melo, D.Q.; Raulino, G.S.C. Adsorção – Aspectos Teóricos e Aplicações Ambientais. Editora UFC, Fortaleza, Brasil, 2014a.
Doudart de la Grée, G.C.H.; Florea, M.V.A.; Keulen, A.; Brouwers, H.J.H. Contaminated biomass fly ashes – Characterization and Treatment optimization for reuse as building materials. Department of the Built Environment, Unit Building Physics and Services, Eindhoven University of Thechnology, The Netherlands, 2016.
Oliveira, D.L.A. Caracterização da cinza de bagaço de cana-de-açúcar e aplicação no solo. Tese de Doutorado, Universidade Estadual de1 Paulista, Campos de Jaboticabal, Brasil, 2015.
Vassilev, S.V.; Baxter, D.; Andersen, L.K. Vassileva, C.G. An overview of the composition and application of biomass ash. Part 2. Potential utilization technological and ecological advantages and challenges. Institute for Energy and Transport, Joint Research Centre, European Commission, Netherlands, 2013b.
Hachimi, A.; Vilcocq, L.; Coursn, C. Kiennemann, A. Study of olivine supported copper sorbents performances in the desulfurization process in link with biomass gasification. Institut de Chimie et Procédés pour 'Energie, l'Environnement et la Santé (ICPEES), France, 2014.
Chytil, S.; Lind, A.; Vanhaecke, E.; Blekkan, E.A. Preparation and Characterization of MnxOy – Al2O3 Sorbents for H2S removal from Biomass Gasification Gas. Norway, 2012.
Barros Neto, B.; Scarminio, I.; Bruns, R. Como fazer experimentos. 4 ed., 414p, São Paulo: Bookman, Brasil, 2010.
Lora, E. E.; Gómez, E.O.; Cortez, L.A. Biomassa para energia. 1 ed., 728p, São Paulo: Editora da Unicamp, Brasil, 2009.
Van Söest, R.; Robertson, J. Analysis of forages and fibrous foods: a laboratory manual. Ithaca, NY: Cornell University, 1985.
James B, C. Chapter 2 - Measuring the Physisorption Isotherm. In: (Ed.). Surface Area and Porosity Determinations by Physisorption. Amsterdam: Elsevier Science, p.29-53. ISBN 978-0-444-51964-1, 2006.
Días, J. M. R. Caracterização e Avaliação das Cinzas do Bagaço de Cana-de-Açúcar como Adsorvente na Remoção dos Íons Cd(II), Ni(II) e Zn(II) de Soluções Aquosas. Tese de Doutorado, UFPE, Brasil, 2013.
Izidoro, J.C.; Fungaro, D.A.; Santos, F.S.; Wang, S. Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Chemical and Environmental Technology Center, Nuclear and Energy Research Institute, São Paulo, Brazil and Department of Chemical Engineering, Curtin University, Australia, 2012.
TC Wi. Chemical Analyses – Determination of loss on ignition in sediment, sludge, soil, and waste. Élément introductif — Élément central — Élément complémentaire. Standard European - 2003.
Bastos, D.M. Métodos Cromatográficos, www.fsp.br/~dmbastos/cromatografia.ppt. São Paulo, Brasil, 2005.
Pécora, A.A.B.; Ávila, I.; Lira, C.S.; Cruz, G.; Crnkovic, P.M. Prediction of the Combustion Process in Fluidized bed on physical-chemical properties of biomass particles and their hydrodynamics behaviors. University of Campinas, Scool of Mechanical Engineering, S.P., Brazil, 2014.
Duman, G.; Uddin, Md. A.; Yanik, J. The effect of char properties on gasification reactivity. Faculty of Science, Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey, 2014.
Senglei, Du.; Haiping, Y.; Kezhen, Q.; Xianhua, W.; Hanping, C. Fusion and transformation properties of the inorganic components in biomass ash. State Key Laboratory of Coal Combustion (Huazhong University of Science and Technology), Hubei Province, China, 2014.
Geraldo, B.C.A. Gaseificação da Casca e da Torta da Mamona para Produção de Gás Combustível. Dissertação de Mestrado, Recife-PE, Brasil, 2013.
Duan, F.; Chyang, C.S.; Wang, Y.J.; Tso, J. Effect of secondary gas injection on the peanut shell combustion and its pollutant emissions in a vortexing fluidized bed combustor. School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui Province, China, 2014.
Tsiakmakis, S.; Mertzis, D.; Dimaratos, A.; Toumasatos, Z.; Samaras, Z. Experimental study of combustion in a spark ignition engine operating with producer gas from various biomass feedstocks. Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2014.
Toscano, G.; Riva, G.; Duca, D.; Pedretti, E.F.;Corinaldesi, F.; Rossini, G. Analysis of the characteristics of the residues of the wine production chain finalized to their industrial and energy recovery. Dipartimento di Scienze Agrarie, Alimentari e Ambientali dell’Universita` Politecnica delle Marche, Via Brecce Bianche, Monte Dago, Italy, 2013.
Kuprianov, V.I.; Arromdee, P. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: A comparative study. School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat University, Thailand, 2013.
Santos, H.; Peres, S. Aproveitamento dos resíduos de biomassa da construção civil (RCC) para geração de combustíveis sólidos (pellets) e gasosos. Prêmio Odebrecht para desenvolvimento sustentável, 20p, Brasil, 2012.
Gomes, B.L.; Martelli, F.H.; Silva, W.T.L. Caracterização físico-quimica e morfológica de Biomassa Capim-elefante, Capim-mombaça.bracharia, Sorgo-embrapa e Bagaço de cana-de-açúcar. III Symposium on Agricultural and Agroindustrial Waste Management. São Pedro-SP, Brasil, 2013.
Virmond, E. Aproveitamento do lodo de tratamento primário de efluentes de um frigorífico como fonte de energia. Dissertação de mestrado, UFSC - Florianópolis/SC, Brasil, 2007.
Camponero, J.; Tenório, J.A.S. Técnicas de Análises Químicas. Estudo Dirigido PMI 2201 – Análises Térmicas, Brasil, 2001.
Seye, O.; Cortez, L.A.B.; Gómez, E.O. Estudo Cinético da Biomassa a partir de resultados Termogravimétricos. Área Interdisciplinar de Planejamento de Sistemas Energéticos. Faculdade Mecânica, Universidade Estadual de Campinas, Campinas-SP-Brasil, 2003.
Ionashiro, M.; Giolito, I. Nomenclatura, Padrões e Apresentação dos resultados em Análise Térmica. Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Brasil, 2008.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 2019
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions 4.0 International.
DECLARATION