Analysis levelized cost of energy from the perspective of an power purchase agreements for airborne wind power technology
DOI:
https://doi.org/10.5902/2236117043709Palabras clave:
Levelized cost of energy. Power purchase agreements.Resumen
With the need to diversify the national electric matrix to expand the generation capacity, the searches for new technologies capable of contributing to supply the national demand are fundamental. In this sense, the development of wind energy technology, but specifically high-altitude wind energy using wired airfoils, is an attractive possibility, given the high national wind potential. This research aimed to analyze the cost models used in the literature to assess the leveled cost of energy (LCOE) from the perspective of an power purchase agreements (PPAs) and to simulate the leveled cost of energy for a wind farm with the innovative technology of wired airfoils. For this, we chose two cities Fortaleza (CE) and Florianópolis (SC) to carry out the simulations. The wind farms are identical, with the same number of wind turbines, the parameters that have been modified are, the amount of energy supplied by each of the scenarios, to visualize the influence of the capacity factor of each scenario within the real and nominal LCOE and the PPA real and nominal after 20 years of analysis. As wind energy is not a constant source of supply, the simulation considered the limits of energy delivery that are above or below the minimum limit of energy delivery. The results demonstrated economic viability in almost all scenarios, with greater attractiveness for scenarios with an increase in the capacity factor. When financial parameters such as federal and state charges are varied downwards, all scenarios investigated are attractive to development with an IRR greater than the reference value.Descargas
Citas
Aghaei Chadegani, A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18-26.
Ahrens, U., Diehl, M., & Schmehl, R. (2014). Airborne wind energy: Springer Science & Business Media.
Aldersey-Williams, J., & Rubert, T. (2019). Levelised cost of energy–A theoretical justification and critical assessment. Energy Policy, 124, 169-179.
Archer, C. L., & Caldeira, K. (2009). Global Assessment of High-Altitude Wind Power. Energies, 2(2), 307-319.
Blair, N., Dobos, A. P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., . . . Janzou, S. (2014). System advisor model, sam 2014.1. 14: General description. Retrieved from
BRASIL. (1995a). 8.987, de 13 de fevereiro de 1995. Constituição da República Federativa do Brasil. Brasília.
BRASIL. (1995b). Lei nº 9.074, de 7 de julho de 1995. Constituição da República Federativa do Brasil. Brasília.
BRASIL. (2004). Lei n 10.848 de 2004. Março 15.
Bruck, M., Goudarzi, N., & Sandborn, P. (2016). A levelized cost of energy (LCOE) model for wind farms that includes power purchase agreement (PPA) energy delivery limits. Paper presented at the ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology.
Bruck, M., Sandborn, P., & Goudarzi, N. (2018). A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs). Renewable Energy, 122, 131-139. doi:https://doi.org/10.1016/j.renene.2017.12.100
Burt, M., Firestone, J., Madsen, J. A., Veron, D. E., & Bowers, R. (2017). Tall towers, long blades and manifest destiny: The migration of land-based wind from the Great Plains to the thirteen colonies. Applied Energy, 206, 487-497.
Cherubini, A., Papini, A., Vertechy, R., & Fontana, M. (2015). Airborne Wind Energy Systems: A review of the technologies. Renewable & Sustainable Energy Reviews, 51, 1461-1476. doi:10.1016/j.rser.2015.07.053
Davidson, C., Steinberg, D., & Margolis, R. (2015). Exploring the market for third-party-owned residential photovoltaic systems: Insights from lease and power-purchase agreement contract structures and costs in California. Environmental Research Letters, 10(2). doi:10.1088/1748-9326/10/2/024006
De Lellis, M., Mendonça, A., Saraiva, R., Trofino, A., & Lezana, Á. (2016). Electric power generation in wind farms with pumping kites: An economical analysis. Renewable Energy, 86, 163-172.
Diehl, M. (2014) Airborne Wind Energy: Basic Concepts and Physical Foundations. AIRBORNE WIND ENERGY (pp. 3-22).
Diehl, M. (2018). Foreword Airborne Wind Energy: Advances in Technology Development and Research. (pp. cap. Foreword, p. vii–x): London: Springer-Verlag Berlin Heidelberg.
Fagiano, L., Milanese, M., & Piga, D. (2010). High-Altitude Wind Power Generation. Ieee Transactions on Energy Conversion, 25(1), 168-180. doi:10.1109/tec.2009.2032582
Fuentealba, E., Ferrada, P., Araya, F., Marzo, A., Parrado, C., & Portillo, C. (2015). Photovoltaic performance and LCoE comparison at the coastal zone of the Atacama Desert, Chile. Energy Conversion and Management, 95, 181-186.
Hernandez, K., Richard, C., & Nathwani, J. (2016). Estimating project LCOE–an analysis of geothermal PPA data. Paper presented at the Proceedings of 41st Workshop on Geothermal Reservoir Engineering.
Lei, X., & Sandborn, P. A. (2018). Maintenance scheduling based on remaining useful life predictions for wind farms managed using power purchase agreements. Renewable Energy, 116, 188-198. doi:10.1016/j.renene.2017.03.053
Mendicino, L., Menniti, D., Pinnarelli, A., & Sorrentino, N. (2019). Corporate power purchase agreement: Formulation of the related levelized cost of energy and its application to a real life case study. Applied Energy, 253. doi:10.1016/j.apenergy.2019.113577
Mendonça, A. K. d. S., Vaz, C. R., Lezana, Á. G. R., Anacleto, C. A., & Paladini, E. P. (2017). Comparing patent and scientific literature in airborne wind energy. Sustainability (Switzerland), 9(6), 915.
Miller, L., Carriveau, R., Harper, S., & Singh, S. (2017). Evaluating the link between LCOE and PPA elements and structure for wind energy. Energy Strategy Reviews, 16, 33-42. doi:10.1016/j.esr.2017.02.006
Nordin, N., & Rahman, H. (2017). Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Nordin, N. D., & Rahman, H. A. (2015). An optimization method for designing stand alone photovoltaic system using iterative method. Paper presented at the 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE).
Nordin, N. D., & Rahman, H. A. (2016). A novel optimization method for designing stand alone photovoltaic system. Renewable Energy, 89, 706-715.
Parrado, C., Girard, A., Simon, F., & Fuentealba, E. (2016). 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy, 94, 422-430.
Parrado, C., Marzo, A., Fuentealba, E., & Fernández, A. (2016). 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renewable and Sustainable Energy Reviews, 57, 505-514.
Ragheb, M. (2015). Economics of wind energy. Wind Power Systems, Course NPRE, 475.
Short, W., Packey, D. J., & Holt, T. (1995). A manual for the economic evaluation of energy efficiency and renewable energy technologies. Retrieved from
Tolmasquim, M. T. (2011). Novo modelo do setor elétrico brasileiro: Synergia.
Vazquez, A., & Iglesias, G. (2016). Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters. Technological Forecasting and Social Change, 104, 89-101.
Wiser, R. H., & Bolinger, M. (2015). 2014 Wind technologies market report: Golden, Virgínia: US. Available in: <http://www.energy.gov/sites/prod/ les/2015/08/f25/ 2014-Wind-Technologies-Market-Report-8.7.pdf>.
Descargas
Publicado
Versiones
- 2022-08-01 (2)
- 2020-09-08 (1)