Quantitative characterization of volume of cavities in hydrodynamic cavitation device using computational fluid dynamics





Advanced oxidation process, hydrodynamic cavitation, orifice plate


Hydrodynamic cavitation has been extensively studied for its potential to remove emerging pollutants. Despite the advance of the experimental studies involving this phenomenon, computational studies that evaluate the influence of the geometry of the cavitation devices on the flow parameters are still necessary. The purpose of this article was to evaluate the influence of the change in the geometry of a Venturi device on the volume of cavities formed in its divergent section using Computational Fluid Dynamics (CFD). The geometric parameters modified in the Venturi were: the diffuser angle and the relation between the height and the width of the throat (h/w). The volume of cavities is an important parameter because it influences the cavitation intensity. A cavitational bench system was constructed in order to obtain input data for simulation. The results showed that the increase in the diffuser angle from 6.5° to 18.5° gradually reduced the volume of cavities from 93 mm3 to 10 mm3. Between the relations h/w = 0.05 and h/w = 0.45 was observed the formation of cavities between 106 mm3 and 77 mm3, however between h/w = 0.45 and h/w = 1.0 there was the formation of 213 mm3. Therefore, Venturi’s with diffuser angle less than 6.5º and relation h/w greater than 0.45 produce greater volume of cavities. The greater volume of cavities will not necessarily produce greater cavitational intensity, since cavitation clouds can be formed and reduce the implosion intensity of the cavitation bubbles.


Download data is not yet available.

Author Biographies

Thiago Vinicius Ribeiro Soeira, Federal University of Triângulo Mineiro, Uberaba, MG

Mestrando no Programa de Pós-Graduação em Ciência e Tecnologia Ambiental (PPGCTA) da Universidade Federal do Triângulo Mineiro (UFTM). Engenheiro Ambiental graduado na (UFTM)

Guilherme Barbosa Lopes Junior, Federal University of Pernambuco, Recife, PE

Possui graduação em Engenharia Civil pela Universidade Federal de Alagoas (2009), mestrado em ciências pelo Departamento de Hidráulica e Saneamento e doutorado em ciências pelo Departamento de Engenharia Mecânica pela Escola de Engenharia de São Carlos (EESC) da Universidade de São Paulo (USP)

Cristiano Poleto, Federal University of Rio Grande do Sul, Porto Alegre, RS

Possui graduação em Engenharia Civil (1996), especialização em Engenharia de Segurança do Trabalho pela Universidade Estadual de Maringá (2002), Mestrado em Engenharia Civil com ênfase em Recursos Hídricos e Tecnologias Ambientais pela Universidade Estadual Paulista Júlio de Mesquita Filho (2003), Doutorado em Recursos Hídricos e Saneamento Ambiental pela Universidade Federal do Rio Grande do Sul (2007) com sanduíche na United States Geological Survey (USGS) de Atlanta - EUA e Pós-Doutorado pela Coventry University da Inglaterra (2009)

Julio Cesar de Souza Inácio Gonçalves, Federal University of Triângulo Mineiro, Uberaba, MG

Doutor em Engenharia Hidráulica e Saneamento


ALVES, P. H. L.; SILVA, P. S. L.; FERREIRA, D. C.; GONÇALVES, J. C. S. I. COD removal from sucrose solution using hydrodynamic cavitation and hydrogen peroxide: a comparison between Venturi device and orifice plate. Revista Brasileira de Recursos Hídricos. 2019;24:1-8.

ANSYS, Inc. FLUENT Theory Guide. Ansys Inc. 2011.

ASHRAFIZADEH, S. M.; GHASSEMI, H. Experimental and numerical investigation on the performance of small-sized cavitating venturis. Flow Measurement and Instrumentation. 2015;42:6-15.

BAGAL, M. V.; GOGATE, P. R. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrasonics Sonochemistry. 2014;21(3):1035-1043.

BARIK, A. J.; GOGATE, P. R. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs. Ultrasonics Sonochemistry. 2018;40:383-394.

BASHIR, T. A.; et al. The CFD driven optimisation of a modified venturi for cavitational activity. The Canadian Journal of Chemical Engineering. 2011;89(6):1366-1375.

BATISTA, M. D.; ANHÊ, A. C.B. M.; GONÇALVES, J. C. S. I. Use of Hydrodynamic Cavitation for Algae Removal: Effect on the Inactivation of Microalgae Belonging to Genus Scenedesmus. Water, Air, & Soil Pollution. 2017;228(11):1-8.

BRINKHORST, S.; VON LAVANTE, E.; WENDT, G. Numerical investigation of cavitating Herschel Venturi-Tubes applied to liquid flow metering. Flow Measurement and Instrumentation. 2015;43:23-33.

CARPENTER, J.; GEORGE, S.; SAHARAN, V. K. Low pressure hydrodynamic cavitating device for producing highly stable oil in water emulsion: Effect of geometry and cavitation number. Chemical Engineering and Processing: Process Intensification. 2017;116:97-104.

DULAR, M.; et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrasonics Sonochemistry. 2016;29:577-588.

HILARES, R. T.; et al. Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: A parametric study. Bioresource Technology. 2017;235:301-308.

KULDEEP, S. V. K. Computational study of different venturi and orifice type hydrodynamic cavitating devices. Journal of Hydrodynamics. 2016;28(2):293-305.

KUMAR, P.; KHANNA, S.; MOHOLKAR, V. S. Flow regime maps and optimization thereby of hydrodynamic cavitation reactors. Aiche Journal. 2012;58(12):3858-3866.

LI, M.; et al. Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Minerals Engineering. 2019;132:268-274.

LI, X, et al. Combined experimental and computational investigation of the cavitating flow in an orifice plate with special emphasis on surrogate-based optimization method. Journal of Mechanical Science and Technology. 2017;31(1):269-279.

MADDIKERI, G. L.; GOGATE, P. R.; PANDIT, A. B. Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel. 2014;137:285-292.

MOHOLKAR, V. S.; KUMAR, P. S.; SENTHIL, P.; PANDIT, A. B. Hydrodynamic cavitation for sonochemical effects. Ultrasonics Sonochemistry. 1999;6(1-2):53-65.

MOHOLKAR, V. S.; PANDIT, A. B. Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation. Chemical Engineering Science. 2001;56(4):1411-1418.

PATIL, P. N.; BOTE, S. D.; GOGATE, P.R. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation. Ultrasonics Sonochemistry. 2014;21(5):1770-1777.

PAWAR, S. K.; et al. Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries. Aiche Journal. 2017;63(10):4705-4716.

RAJORIYA, S.; et al. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents. Journal of Hazardous Materials. 2018;344:1109-1115.

RAJORIYA, S.; BARGOLE, S.; SAHARAN, V. K. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives. Ultrasonics Sonochemistry. 2017;37:192-202.

SAHARAN, V. K. et al. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics Sonochemistry. 2013;20(1):345-353.

SARC, A. et al. The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrasonics Sonochemistry. 2017;34:51-59.

SAXENA, S.; SAHARAN, V. K.; GEORGE, S. Enhanced synergistic degradation efficiency using hybrid hydrodynamic cavitation for treatment of tannery waste effluent. Journal of Cleaner Production. 2018;198:1406-1421.

SIMPSON, A.; RANADE, V. V. Modeling hydrodynamic cavitation in venturi: influence of venturi configuration on inception and extent of cavitation. Aiche Journal, 2018a;65(1):421-433.

SIMPSON, A.; RANADE, V. V. Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs. Chemical Engineering Research and Design. 2018b;136:698-711.

THANEKAR, P.; MURUGESAN, P.; GOGATE, P. R. Improvement in biological oxidation process for the removal of dichlorvos from aqueous solutions using pretreatment based on Hydrodynamic Cavitation. Journal of Water Process Engineering. 2018;23:20-26.

THANEKAR, P.; PANDA, M.; GOGATE, P. R. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes. Ultrasonics Sonochemistry. 2018;40:567-576.

WANG, X.; ZHANG, Y. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation. Journal of Hazardous Materials. 2009;161(1):202-207.

XU, C.; HEISTER, S. D.; FIELD, R. Modeling Cavitating Venturi Flows. Journal of Propulsion and Power. 2002;18(6):1227-1234.

ZUPANC, M.; et al. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry. 2013;20(4):1104-1112.



2020-12-04 — Updated on 2022-07-28


How to Cite

Soeira, T. V. R., Junior, G. B. L., Poleto, C., & Gonçalves, J. C. de S. I. (2022). Quantitative characterization of volume of cavities in hydrodynamic cavitation device using computational fluid dynamics. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e28. https://doi.org/10.5902/2236117062707 (Original work published December 4, 2020)

Similar Articles

You may also start an advanced similarity search for this article.