Computational modelling of urban drainage network using LID alternatives in a sub-basin in the city of Maringa, Parana, Brazil

Authors

DOI:

https://doi.org/10.5902/2236117062657

Keywords:

Urban floods, Urban drainage compensatory techniques, Urban water management

Abstract

With urbanization development, inundations and urban floods become more frequent. In the city of Maringa, Parana, this type of event is often observed in some specific dense urban locations, resulted by intense rainfall. In this context, the objective of this paper is to perform a computational modelling in the urban drainage network, most specifically in the sub-basin defined by the intersection of avenues Guaiapo and Palmares, in the city of Maringa, Parana, considering the current situation and with the application of Low Impact Development (LID) compensatory techniques. In this regard, the computational program SewerGEMS® was used to develop the scenarios simulations. The results shown that the actual network is undersized (Scenario 01), and it is proposed the adoption of LID compensatory measures (Scenarios 02, 03 and 04). The computational modelling in the elaboration of the scenarios was effective and it may support the municipal urban management with the implementation of an adequate and efficient system of stormwater management.

Downloads

Download data is not yet available.

Author Biographies

Murilo Camilo, State University of Maringa, Maringá, PR

Graduando em Engenharia Civil pela Universidade Estadual de Maringá

Roberto Takeshi Nakahashi, State University of Maringa, Maringá, PR

Engenheiro Civil pela Universidade Esatdual de Maringá

Bruno Henrique Toná Juliani, Technology and Environmental Monitoring System of Paraná State, Curitiba, PR

Engenheiro Civil pela Universidade Esatdual de Maringá

Juliane Vier Vieira, State University of Maringa, Maringá, PR

Graduada em Engenharia Civil pela Universidade Estadual de Maringá (2013), Doutoranda em Engenharia Civil, área de concentração: Hidráulica, Recursos Hídricos e Ambiente na Faculdade de Engenharia da Universidade do Porto (2020-2023)

Cristhiane Michiko Passos Okawa, State University of Maringa, Maringá, PR

Possui graduação em Engenharia Civil pela Universidade Estadual de Maringá (1992), Mestrado em Engenharia Hidráulica, área de concentração: Recursos Hídricos pela Universidade Federal do Paraná (1998), Doutorado em Ecologia de Ambientes Aquáticos Continentais, área de concentração: Ciências Ambientais pela Universidade Estadual de Maringá (2009) e Pós-doutorado em Recursos Hídricos pela UNICAMP (2019)

References

ASCE - AMERICAN SOCIETY OF CIVIL ENGINEERING. Design and Construction of sanitary and storm sewers. Manuals and Reports of Engineering Practice, n. 37, New York, 1969.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 9649: Projeto de redes coletoras de esgoto sanitário. Rio de Janeiro, 1986.

BAEK, S. S.; CHOI, D. H.; JUNG, J. W.; LEE, H.; YOON, K. S.; CHO K. H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Research, v. 86, pp. 122-131, doi: [10.1016/j.watres.2015.08.038], 2015.

BAI, Y.; LI, Y.; ZHANG, R.; ZHAO, N.; ZENG, X. Comprehensive Performance Evaluation System Based on Environmental and Economic Benefits for Optimal Allocation of LID Facilities. Water, v. 11, n. 2, pp. 341-354, doi: [10.3390 / w11020341], 2019.

BENTLEY. Sewergems User’s Guide, 2018. Available in: https://communities.bentley.com/products/hydraulics___hydrology/w/hydraulics_and_hydrology__wiki/10096/learning-resource-guide-for-new-users-of-bentley-sewergems. Access em: 02 dez 2019.

DAEE - DEPARTAMENTO DE ÁGUAS E ENERGIA ELÉTRICA DO ESTADO DE SÃO PAULO. Guia prático para projetos de pequenas obras hidráulicas. Secretaria de Estado de Energia, Recursos Hídricos e Saneamento, São Paulo, 2005.

ECKART, K.; MCPHEE, Z.; BOLISETTI, T. Performance and implementation of low impact development – A review. Science of the Total Environment, v. 607-608, pp. 413-432, doi: [10.1016/j.scitotenv.2017.06.254], 2017.

ECKART, K.; MCPHEE, Z.; BOLISETTI, T. Multiobjective optimization of low impact development stormwater controls. Journal of Hydrology, v. 562, pp. 564-576, doi: [10.1016/j.jhydrol.2018.04.068], 2018.

FOOMANI, M. S.; MALEKMOHAMMADI, B. Site selection of sustainable urban drainage systems using fuzzy logic and multi-criteria decision-making. Water and Environmental Journal, v. 0, pp. 1-16, doi: [10.1111/wej.12487], 2019.

FCTH – FUNDAÇÃO CENTRO TECNOLÓGICO DE HIDRÁULICA. Diretrizes básicas para projetos de drenagem urbana no município de São Paulo. Prefeitura do Município de São Paulo, São Paulo, 1999.

GARCIA, C.; JABUR, A. S.; OKAWA, C. M. P.; ILDEFONSO, J. S. Avaliação da drenagem urbana no entorno do Parque Florestal dos Pioneiros. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 19, pp. 3-9, doi: [10.5902/2236117020551], 2015.

GONÇALVES, A. M. B.; ROVERI, S. D.; ORIOLI, M. A.; JABUR, A. S.; OKAWA, C. M. P. Diagnóstico da rede de drenagem urbana de uma sub-bacia do córrego Osório, Maringá – PR. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 19, pp. 59-66, doi: [10.5902/2236117020572], 2015.

HOANG, L.; FENNER, R. A. System interactions of stormwater management using sustainable urban drainage systems and green infrastructure. Urban Water Journal, v. 13, n. 7, pp. 739-758, doi: [10.1080/1573062X.2015.1036083], 2016.

JOHNSON, D.; GEISENDORF, S. Are Neighborhood-level SUDS Worth it? An Assessment of the Economic Value of Sustainable Urban Drainage System Scenarios Using Cost-Benefit Analyses. Ecological Economics, v. 158, pp. 194-205, doi: [10.1016/j.ecolecon.2018.12.024], 2019.

LÄHDE, E.; KHADKA, A.; TAHVONEN, O.; KOKKONEN, T. Can We Really Have It All? – Designing Multifunctionality with Sustainable Urban Drainage System Elements. Sustainability, v. 11, pp. 1-20, doi: [10.3390/su11071854], 2019.

MGUNI, P.; HERSLUND, L.; JENSEN, M. B. Sustainable urban drainage systems: examining the potential for green infrastructure-based stormwater management for Sub-Saharan cities. Natural Hazards, v. 82, pp. 241-257, doi: [10.1007 / s11069-016-2309-x], 2016.

PALANISAMY, B.; CHUI, T. F. M. Rehabilitation of concrete canal in urban catchments using low impact development techniques. Journal of Hydrology, v. 523, pp. 309-319, doi: [10.1016/j.jhydrol.2015.01.034], 2015.

PALLA, A.; GNECCO, I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology, v. 528, pp. 361-368, doi: [10.1016/j.jhydrol.2015.06.050], 2015.

RIZZO, A.; BRESCIANI, R.; MAIS, F.; BOANO, F.; REVELLI, R.; RIDOLFI, I. Flood reduction as na ecosystem servisse of constructed wetlands for combined sewer overflow. Journal of Hydrology, v. 560, pp. 150-159, doi: [10.1016/j.jhydrol.2018.03.020], 2018.

SOUZA, J. M. D.; ZAMUNER, L. D. Análise da rede de drenagem urbana instalada na face norte do Bosque II, em Maringá, Paraná. Revista Uningá, v. 27, n. 1, pp. 19-26, 2016.

TEDOLDI, D.; CHEBBO, G.; PIERLOT, D.; KOVACS, Y.; GROMAIRE, M. C. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: A literature review. Science of the Total Environment, v. 569-570, pp. 904-926, doi: [10.1016/j.scitotenv.2016.04.215], 2016.

TERASSI, P. M. de B; SOUZA, R. V. B. de. Reflexões acerca do papel dos planos diretores: o Eldorado e a mímese do planejamento em Maringá – Paraná. Geo UERJ, Rio de Janeiro, n. 27, p. 120-136 , doi: [10.12957/geouerj.2015.12378], 2015

TUCCI, C. E. M. Hidrologia ciência e aplicação. UFRGS/ABRH, 3 ed., Porto Alegre, 2004.

VALLE, R. A. D.; POMPEU, C. R.; RICCIARDI, R. L. G. F.; OKAWA, C. M. P.; MARTINS, D. D. N.; PAREDES, E. A. Uso e ocupação do solo na microbacia do Ribeirão Maringá – Maringá/PR: Análise da expansão urbana por meio do SIG. Revista Tecnológica, v. 25, n. 1, pp. 47-56, doi: [10.4025/revtecnol.v25i1.28371], 2016.

WANG, S.; WANG, H. Extending the Rational Method for assessing and developing sustainable urban drainage systems. Water Research, v. 144, pp. 112-125, doi: [10.1016/j.watres.2018.07.022], 2018.

WILKEN, P. S. Engenharia de drenagem superficial. Companhia Ambiental do Estado de São Paulo, São Paulo, 1978.

XU, T.; ENGEL, B. A.; SHI, X.; LENG, L.; JIA, H.; YU, S. L.; LIU, Y. Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout. Science of the Total Environment, v. 640, pp. 570-580, doi: [10.1016/j.scitotenv.2018.05.358], 2018.

YANG, Y.; CHUI, T. F. M. Integrated hydro-environmental impact assessment and alternative selection of low impact development practices in small urban catchments. Journal of Environmental Management, v. 223, pp. 324-337, doi: [10.1016 / j.jenvman.2018.06.021], 2018.

ZANANDREA, F.; SILVEIRA, A. L. L. D. Effects of LID Implementation on Hydrological Processes in an Urban Catchment under Consolidation in Brazil. Journal of Environmental Engineering, v. 144, n. 9, pp. 1-9, doi: [10.1061/(ASCE)EE.1943-7870.0001417], 2018.

ZANANDREA, F.; SILVEIRA, A. L. L. D. Uso de técnicas de low impact development no controle de impactos hidrológicos. Engenharia Sanitária e Ambiental, v. 24, n. 6, pp. 1195-1208, doi: [10.1590/s1413-41522019188729], 2019.

ZHANG, S.; GUO, Y. SWMM Simulation of the Storm Water Volume Control Performance of Permeable Pavement Systems. Journal of Hydrologic Engineering, v. 20, n. 4, pp. 1-5, doi: [10.1061 / (ASCE) HE.1943-5584.0001092], 2014.

ZHOU, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water, v. 6, pp. 976-992, doi: [10.3390/w6040976], 2014.

Downloads

Published

2020-12-04 — Updated on 2022-07-28

Versions

How to Cite

Camilo, M., Nakahashi, R. T., Juliani, B. H. T., Vieira, J. V., & Okawa, C. M. P. (2022). Computational modelling of urban drainage network using LID alternatives in a sub-basin in the city of Maringa, Parana, Brazil. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e3. https://doi.org/10.5902/2236117062657 (Original work published December 4, 2020)

Most read articles by the same author(s)

<< < 1 2