O impacto de fatores da complexidade da tarefa na performance na tomada de decisão
DOI:
https://doi.org/10.5902/1983465989667Parole chiave:
Complexidade, Problema de otimização, Knapsack Problem, Tomada de decisãoAbstract
Objetivo: Este estudo tem como objetivo compreender o impacto de fatores da complexidade na performance na tomada de decisão humana em um problema econômico (Knapsack Problem), correlato de inúmeras situações enfrentadas diariamente pelos indivíduos relacionadas à prática de administradores e gestores.
Metodologia: A pesquisa empregou um delineamento experimental com 41 participantes, variando o número de itens e duas métricas de complexidade computacional, "input size" e "instance correlation". Foi avaliada a performance por meio da mensuração do desempenho de otimização, desempenho relativo, RT e confiança.
Resultados: Os resultados evidenciam um impacto robusto da manipulação do número de itens, resultando na redução do desempenho de otimização e confiança e aumento do RT. Encontrou-se uma transição de fase para o desempenho relativo, na qual os sujeitos suportaram aumentos de 5 para 6 itens em detrimento de realizar a tarefa em maior tempo, no entanto, para 7 itens tal compensação não foi mais possível. A medida input size associou-se significativamente com todas as variáveis dependentes, sendo capaz de explicar 51,84% da variação RT.
Implicações práticas: Esses resultados podem ser aplicados em áreas que envolvem decisões complexas, como alocação de recursos e planejamento logístico, tendo em vista que a pesquisa contribui para o entendimento de limitações cognitivas humanas, possibilitando o desenvolvimento de abordagens que reduzam erros e sobrecarga cognitiva.
Downloads
Riferimenti bibliografici
Adomavicius, G., Curley, S. P., Gupta, A., & Sanyal, P. (2020). How decision complexity affects outcomes in combinatorial auctions. Production and Operations Management, 29(11), 2579-2600. https://doi.org/10.1111/poms.13249 DOI: https://doi.org/10.1111/poms.13249
Aitchison, L., Bang, D., Bahrami, B., & Latham, P. E. (2015). Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS computational biology, 11(10), e1004519. DOI: https://doi.org/10.1371/journal.pcbi.1004519
Bossaerts, P., & Murawski, C. (2017). Computational Complexity and Human Decision-Making. Trends in Cognitive Sciences, 21(12), 917–929. https://doi.org/10.1016/j.tics.2017.09.005 DOI: https://doi.org/10.1016/j.tics.2017.09.005
Brus, J., Aebersold, H., Grueschow, M., & Polania, R. (2021). Sources of confidence in value-based choice. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-27618-5 DOI: https://doi.org/10.1038/s41467-021-27618-5
Burns, N. R., Lee, M. D., & Vickers, D. (2006). Are Individual Differences in Performance on Perceptual and Cognitive Optimization Problems Determined by General Intelligence? The Journal of Problem Solving, 1(1), 5–19. https://doi.org/10.7771/1932-6246.1003 DOI: https://doi.org/10.7771/1932-6246.1003
Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of Management Review, 13(1), 40–52. https://doi.org/10.5465/amr.1988.4306775 DOI: https://doi.org/10.2307/258353
Carruthers, S. E. (2015). The Role of the Goal in Problem Solving Hard Computational Problems: Do People Really Optimize?
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.
Dörner, D., & Funke, J. (2017). Complex problem solving: What it is and what it is not. Frontiers in Psychology, 8 (jul), 1–11. https://doi.org/10.3389/fpsyg.2017.01153 DOI: https://doi.org/10.3389/fpsyg.2017.01153
Double, K. S., & Birney, D. P. (2018). Reactivity to confidence ratings in older individuals performing the latin square task. Metacognition and Learning, 13(3), 309–326. https://doi.org/10.1007/s11409-018-9186-5 DOI: https://doi.org/10.1007/s11409-018-9186-5
Erdfelder, E., FAul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 DOI: https://doi.org/10.3758/BRM.41.4.1149
Franco, J. P., Doroc, K., Yadav, N., Bossaerts, P., & Murawski, C. (2022). Task-independent metrics of computational hardness predict human cognitive performance. https://doi.org/10.1101/2021.04.25.441300 DOI: https://doi.org/10.1101/2021.04.25.441300
Franco, J. P., Yadav, N., Bossaerts, P., & Murawski, C. (2021). Generic properties of a computational task predict human effort and performance. Journal of Mathematical Psychology, 104. https://doi.org/10.1016/j.jmp.2021.102592 DOI: https://doi.org/10.1016/j.jmp.2021.102592
Galy, E., Cariou, M., & Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International Journal of Psychophysiology, 83(3), 269–275. https://doi.org/10.1016/j.ijpsycho.2011.09.023 DOI: https://doi.org/10.1016/j.ijpsycho.2011.09.023
Gavas, R. D., Tripathy, S. R., Chatterjee, D., & Sinha, A. (2018). Cognitive load and metacognitive confidence extraction from pupillary response. Cognitive Systems Research, 52, 325–334. https://doi.org/10.1016/j.cogsys.2018.07.021 DOI: https://doi.org/10.1016/j.cogsys.2018.07.021
Hidalgo-herrero, M., Rabanal, P., Rodríguez, I., & Rubio, F. (2013). Comparing Problem Solving Strategies for NP-hard. 124, 1–25. https://doi.org/10.3233/FI-2013-822 DOI: https://doi.org/10.3233/FI-2013-822
Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Em Instructional Science (Vol. 48, Número 1). Springer Netherlands. https://doi.org/10.1007/s11251-020-09502-9 DOI: https://doi.org/10.1007/s11251-020-09502-9
Lempert, K. M., Chen, Y. L., & Fleming, S. M. (2015). Relating pupil dilation and metacognitive confidence during auditory decision-making. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126588 DOI: https://doi.org/10.1371/journal.pone.0126588
Liu, P., & Li, Z. (2012). Task complexity: A review and conceptualization framework. International Journal of Industrial Ergonomics, 42(6), 553–568. https://doi.org/10.1016/j.ergon.2012.09.001 DOI: https://doi.org/10.1016/j.ergon.2012.09.001
Mackinnon, A. J., & Wearing, A. J. (1980). Complexity and decision making. Behavioral Science, 25(4), 285–296. https://doi.org/10.1002/bs.3830250405 DOI: https://doi.org/10.1002/bs.3830250405
Mangion, K. L. H. (2017). Human cognitive performance: a neurophysiological assessment of the impact that reverse assessment priming has on mental workload, performance and cognitive efficiency during transient information processing. University of Southern Queensland.
Meloso, D., Copic, J., & Bossaerts, P. (2009). Promoting intellectual discovery: Patents versus markets. Science, 323(5919), 1335–1339. https://doi.org/10.1126/science.1158624 DOI: https://doi.org/10.1126/science.1158624
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev, 63(2), 81–97. https://doi.org/10.1177/001088049003100202 DOI: https://doi.org/10.1037/h0043158
Murawski, C., & Bossaerts, P. (2016). How Humans Solve Complex Problems: The Case of the Knapsack Problem. Scientific Reports, 6(September), 1–10. https://doi.org/10.1038/srep34851 DOI: https://doi.org/10.1038/srep34851
Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387. https://doi.org/10.1016/0030-5073(76)90022-2 DOI: https://doi.org/10.1016/0030-5073(76)90022-2
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 534–552. https://doi.org/10.1037/0278-7393.14.3.534 DOI: https://doi.org/10.1037//0278-7393.14.3.534
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1991). Consumer decision making. Em Handbook of consumer behaviour (p. 50–84). Prentice-Hall.
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press. DOI: https://doi.org/10.1017/CBO9781139173933
Pizlo, Z., & Zhen Li. (2005). Solving combinatorial problems: The 15-puzzle. Memory & Cognition, 33(6), 1069–1084. DOI: https://doi.org/10.3758/BF03193214
Ross, N. D. F., Johns, M. B., Keedwell, E. C., & Savic, D. A. (2019). Human-evolutionary problem solving through gamification of a bin-packing problem. GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, 1465–1473. https://doi.org/10.1145/3319619.3326871 DOI: https://doi.org/10.1145/3319619.3326871
Simon, H. A. (1962). The Architecture of Complexity Proceedings of the American Philosophical Society Vol. 106.
Simon, H. A. (1990). Invariants of human behavior. Annual review of psychology, 41(1), 1-20. DOI: https://doi.org/10.1146/annurev.ps.41.020190.000245
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 DOI: https://doi.org/10.1016/0364-0213(88)90023-7
Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5 DOI: https://doi.org/10.1007/s10648-019-09465-5
Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice. Science, 211(4481), 453–458. https://doi.org/10.1126/science.7455683 DOI: https://doi.org/10.1126/science.7455683
Wei, Z., & Wang, X. J. (2015). Confidence estimation as a stochastic process in a neurodynamical system of decision making. Journal of neurophysiology, 114(1), 99-113. https://doi.org/10.1152/jn.00793.2014 DOI: https://doi.org/10.1152/jn.00793.2014
Wood, R. E. (1986). Task Complexity: Definition of the Construct. Organizational behavior and human decision processes, 37, 60–82. DOI: https://doi.org/10.1016/0749-5978(86)90044-0
Zagermann, J., Pfeil, U., & Reiterer, H. (2016). Measuring cognitive load using eye tracking technology in visual computing. ACM International Conference Proceeding Series, 24-October, 78–85. https://doi.org/10.1145/2993901.2993908 DOI: https://doi.org/10.1145/2993901.2993908
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Carolina Schneider Bender, Mauri Leodir Löbler, Eliete dos Reis Lehnhart

TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.
Until 2023, copyright was transferred by the authors to ReA/UFSM. As of 2024, the authors of articles published by the journal retain the copyright to their work. ReA/UFSM operates under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted reuse and distribution of articles, provided the original work is properly cited.

