The influence of task complexity factors on decision-making performance

Authors

DOI:

https://doi.org/10.5902/1983465989667

Keywords:

Complexity, Optimization problem, Knapsack Problem, Decision-making

Abstract

Objective: This study aims to understand the impact of complexity factors on human decision-making performance in an economic problem (the Knapsack Problem), which is analogous to numerous situations individuals encounter daily related to the practices of administrators and managers.

Methodology: The research employed an experimental design with 41 participants, varying the number of items and two metrics of computational complexity: "input size" and "instance correlation". Performance was assessed by measuring optimization performance, relative performance, response time (RT), and confidence.

Results: The findings reveal a significant impact from manipulating the number of items, leading to a decrease in optimization performance and confidence, alongside an increase in RT. A phase transition was observed in relative performance, where participants managed increases from 5 to 6 items despite longer task completion times; however, this compensation was no longer feasible at 7 items. The input size measure was significantly associated with all dependent variables, explaining 51.84% of the variation in RT.

Practical Implications: These results can be applied in areas involving complex decision-making, such as resource allocation and logistical planning. The research contributes to understanding human cognitive limitations, enabling the development of strategies that reduce errors and cognitive overload.

Downloads

Download data is not yet available.

Author Biographies

Carolina Schneider Bender, Universidade Federal de Santa Maria

Doctor of Administration from Federal University of Santa Maria (UFSM).

Mauri Leodir Löbler, Universidade Federal de Santa Maria

Doctor of Administration from Federal University of Rio Grande (UFRGS). Professor from the Department of Administration of Federal University of Santa Maria (UFSM).

Eliete dos Reis Lehnhart, Universidade Federal de Santa Maria

 Doctor of Administration from Federal University of Santa Maria (UFSM). Professor from the Department of Administration of Federal University of Santa Maria (UFSM).

References

Adomavicius, G., Curley, S. P., Gupta, A., & Sanyal, P. (2020). How decision complexity affects outcomes in combinatorial auctions. Production and Operations Management, 29(11), 2579-2600. https://doi.org/10.1111/poms.13249 DOI: https://doi.org/10.1111/poms.13249

Aitchison, L., Bang, D., Bahrami, B., & Latham, P. E. (2015). Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS computational biology, 11(10), e1004519. DOI: https://doi.org/10.1371/journal.pcbi.1004519

Bossaerts, P., & Murawski, C. (2017). Computational Complexity and Human Decision-Making. Trends in Cognitive Sciences, 21(12), 917–929. https://doi.org/10.1016/j.tics.2017.09.005 DOI: https://doi.org/10.1016/j.tics.2017.09.005

Brus, J., Aebersold, H., Grueschow, M., & Polania, R. (2021). Sources of confidence in value-based choice. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-27618-5 DOI: https://doi.org/10.1038/s41467-021-27618-5

Burns, N. R., Lee, M. D., & Vickers, D. (2006). Are Individual Differences in Performance on Perceptual and Cognitive Optimization Problems Determined by General Intelligence? The Journal of Problem Solving, 1(1), 5–19. https://doi.org/10.7771/1932-6246.1003 DOI: https://doi.org/10.7771/1932-6246.1003

Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of Management Review, 13(1), 40–52. https://doi.org/10.5465/amr.1988.4306775 DOI: https://doi.org/10.2307/258353

Carruthers, S. E. (2015). The Role of the Goal in Problem Solving Hard Computational Problems: Do People Really Optimize?

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge.

Dörner, D., & Funke, J. (2017). Complex problem solving: What it is and what it is not. Frontiers in Psychology, 8 (jul), 1–11. https://doi.org/10.3389/fpsyg.2017.01153 DOI: https://doi.org/10.3389/fpsyg.2017.01153

Double, K. S., & Birney, D. P. (2018). Reactivity to confidence ratings in older individuals performing the latin square task. Metacognition and Learning, 13(3), 309–326. https://doi.org/10.1007/s11409-018-9186-5 DOI: https://doi.org/10.1007/s11409-018-9186-5

Erdfelder, E., FAul, F., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 DOI: https://doi.org/10.3758/BRM.41.4.1149

Franco, J. P., Doroc, K., Yadav, N., Bossaerts, P., & Murawski, C. (2022). Task-independent metrics of computational hardness predict human cognitive performance. https://doi.org/10.1101/2021.04.25.441300 DOI: https://doi.org/10.1101/2021.04.25.441300

Franco, J. P., Yadav, N., Bossaerts, P., & Murawski, C. (2021). Generic properties of a computational task predict human effort and performance. Journal of Mathematical Psychology, 104. https://doi.org/10.1016/j.jmp.2021.102592 DOI: https://doi.org/10.1016/j.jmp.2021.102592

Galy, E., Cariou, M., & Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International Journal of Psychophysiology, 83(3), 269–275. https://doi.org/10.1016/j.ijpsycho.2011.09.023 DOI: https://doi.org/10.1016/j.ijpsycho.2011.09.023

Gavas, R. D., Tripathy, S. R., Chatterjee, D., & Sinha, A. (2018). Cognitive load and metacognitive confidence extraction from pupillary response. Cognitive Systems Research, 52, 325–334. https://doi.org/10.1016/j.cogsys.2018.07.021 DOI: https://doi.org/10.1016/j.cogsys.2018.07.021

Hidalgo-herrero, M., Rabanal, P., Rodríguez, I., & Rubio, F. (2013). Comparing Problem Solving Strategies for NP-hard. 124, 1–25. https://doi.org/10.3233/FI-2013-822 DOI: https://doi.org/10.3233/FI-2013-822

Klepsch, M., & Seufert, T. (2020). Understanding instructional design effects by differentiated measurement of intrinsic, extraneous, and germane cognitive load. Em Instructional Science (Vol. 48, Número 1). Springer Netherlands. https://doi.org/10.1007/s11251-020-09502-9 DOI: https://doi.org/10.1007/s11251-020-09502-9

Lempert, K. M., Chen, Y. L., & Fleming, S. M. (2015). Relating pupil dilation and metacognitive confidence during auditory decision-making. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126588 DOI: https://doi.org/10.1371/journal.pone.0126588

Liu, P., & Li, Z. (2012). Task complexity: A review and conceptualization framework. International Journal of Industrial Ergonomics, 42(6), 553–568. https://doi.org/10.1016/j.ergon.2012.09.001 DOI: https://doi.org/10.1016/j.ergon.2012.09.001

Mackinnon, A. J., & Wearing, A. J. (1980). Complexity and decision making. Behavioral Science, 25(4), 285–296. https://doi.org/10.1002/bs.3830250405 DOI: https://doi.org/10.1002/bs.3830250405

Mangion, K. L. H. (2017). Human cognitive performance: a neurophysiological assessment of the impact that reverse assessment priming has on mental workload, performance and cognitive efficiency during transient information processing. University of Southern Queensland.

Meloso, D., Copic, J., & Bossaerts, P. (2009). Promoting intellectual discovery: Patents versus markets. Science, 323(5919), 1335–1339. https://doi.org/10.1126/science.1158624 DOI: https://doi.org/10.1126/science.1158624

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev, 63(2), 81–97. https://doi.org/10.1177/001088049003100202 DOI: https://doi.org/10.1037/h0043158

Murawski, C., & Bossaerts, P. (2016). How Humans Solve Complex Problems: The Case of the Knapsack Problem. Scientific Reports, 6(September), 1–10. https://doi.org/10.1038/srep34851 DOI: https://doi.org/10.1038/srep34851

Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387. https://doi.org/10.1016/0030-5073(76)90022-2 DOI: https://doi.org/10.1016/0030-5073(76)90022-2

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive strategy selection in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(3), 534–552. https://doi.org/10.1037/0278-7393.14.3.534 DOI: https://doi.org/10.1037//0278-7393.14.3.534

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1991). Consumer decision making. Em Handbook of consumer behaviour (p. 50–84). Prentice-Hall.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge university press. DOI: https://doi.org/10.1017/CBO9781139173933

Pizlo, Z., & Zhen Li. (2005). Solving combinatorial problems: The 15-puzzle. Memory & Cognition, 33(6), 1069–1084. DOI: https://doi.org/10.3758/BF03193214

Ross, N. D. F., Johns, M. B., Keedwell, E. C., & Savic, D. A. (2019). Human-evolutionary problem solving through gamification of a bin-packing problem. GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, 1465–1473. https://doi.org/10.1145/3319619.3326871 DOI: https://doi.org/10.1145/3319619.3326871

Simon, H. A. (1962). The Architecture of Complexity Proceedings of the American Philosophical Society Vol. 106.

Simon, H. A. (1990). Invariants of human behavior. Annual review of psychology, 41(1), 1-20. DOI: https://doi.org/10.1146/annurev.ps.41.020190.000245

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7 DOI: https://doi.org/10.1016/0364-0213(88)90023-7

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5 DOI: https://doi.org/10.1007/s10648-019-09465-5

Tversky, A., & Kahneman, D. (1981). The Framing of Decisions and the Psychology of Choice. Science, 211(4481), 453–458. https://doi.org/10.1126/science.7455683 DOI: https://doi.org/10.1126/science.7455683

Wei, Z., & Wang, X. J. (2015). Confidence estimation as a stochastic process in a neurodynamical system of decision making. Journal of neurophysiology, 114(1), 99-113. https://doi.org/10.1152/jn.00793.2014 DOI: https://doi.org/10.1152/jn.00793.2014

Wood, R. E. (1986). Task Complexity: Definition of the Construct. Organizational behavior and human decision processes, 37, 60–82. DOI: https://doi.org/10.1016/0749-5978(86)90044-0

Zagermann, J., Pfeil, U., & Reiterer, H. (2016). Measuring cognitive load using eye tracking technology in visual computing. ACM International Conference Proceeding Series, 24-October, 78–85. https://doi.org/10.1145/2993901.2993908 DOI: https://doi.org/10.1145/2993901.2993908

Downloads

Published

2025-06-27

How to Cite

Schneider Bender, C. S., Löbler, M. L., & Lehnhart, E. dos R. (2025). The influence of task complexity factors on decision-making performance. Revista De Administração Da UFSM, 18(2), e1. https://doi.org/10.5902/1983465989667

Issue

Section

Articles