Resources of Geographical Information Systems and open source database as a support to environmental surveillance for monitoring and detection of illegal deforestation
DOI:
https://doi.org/10.5902/2236499490049Keywords:
Free orbital imagery, Thematic classification, Thematic accuracy, Geoprocessing, Open-source softwareAbstract
The use of open-source databases and tools freely available in geographic information systems for spatial analysis have provided the development of successful actions by environmental inspection institutions. In this sense, the images made available free of charge by the Norwegian International Climate and Forest Initiative (NICFI) represent an important database that enables the comparative analysis of environmental interventions in monthly periods. To fuly optimize the use of these data in enviromental inspection, it is possible to rely on the fact that the greater the spatial and temporal resolutions, the better the results achieved. The use of geographic information systems techniques such as the supervised classification of images and thematic quality assessment, demonstrated in this work, are essential procedures for the reliability of the data needed for applying penalties to environmental violators. The conclusion of this research indicates that currently, both orbital data from remote sensing and free computational programs of the Open Source type, are available, which allow satisfactory results. These resources enable the efficient development of methods and procedures in fields of scientific research associated with the environment, opening new perspectives for current work and future applications.
Downloads
References
Ariza López, F. J. (2002). Calidad en la producción cartográfica. Ra-Ma.
Brasil. (2021) Lei Geral de Proteção de Dados Pessoais (LGPD). http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm
Calamito, A. (2017). A History of Open Source GIS, from Humble Beginnings to World-Changing Applications. Retrieved, 7, 2023.
Cambraia, D. J., Brites, R. S., & Bias, E. S. (2019). Application Potentialities of Vegetation Indices Based on the Visible Portion of the Spectrum of Electromagnetic Radiation. Anuário Do Instituto de Geociências - UFRJ, 42(4), 83–93. https://doi.org/10.11137/2019_4_83_93
Congalton, R. G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3rd ed.). CRC Press. https://doi.org/10.1201/9780429052729
Fernandes, L. C. (2019). Modelagem de risco de incêndios florestais utilizando redes neurais artificiais aplicada às regiões metropolitanas. https://repositorio.ufmg.br/items/1cc3d47e-cde9-41fd-a352-8fd90d07f918
Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72(5), 323–327. https://doi.org/10.1037/h0028106
Foody, G. M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, 239, 111630. https://doi.org/10.1016/j.rse.2019.111630
Hong, F., He, G., Wang, G., Zhang, Z., & Peng, Y. (2025). AuxTransUNet: Enhancing Remote Sensing Image Segmentation of Open-Pit Mining Areas in Qinghai–Tibet Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18, 20348–20358. https://doi.org/10.1109/JSTARS.2025.3595592
Karasiak, N. (2016). Dzetsaka Qgis Classification plugin. https://plugins.qgis.org/plugins/dzetsaka/
Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310
Llano, X. C. (2024). AcATaMa - QGIS plugin for Accuracy Assessment of Thematic Maps, version 24.10-Noosa. https://plugins.qgis.org/plugins/AcATaMa/version/24.10/
Long, Y., Ding, H., Zhu, Y., Yang, Z., & Li, B. (2025). FSRNet: A lightweight remote sensing forest wildfire detection network based on multi-scale, multi-level, and multi-path approaches. Advances in Space Research, 76(8), 4194–4212. https://doi.org/10.1016/j.asr.2025.07.072
Minas Gerais. Polícia Militar (2021). Comando de Policiamento de Meio Ambiente. Belo Horizonte,
Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62(4), 275–293. https://doi.org/10.1016/0304-3800(92)90003-W
Moraes, D. R. V., Ferreira Neto, L. C., Costa, M. D. S. S., Lima, A. M. M., Vieira, I. C. G., Lisboa Filho, J. & Adami, M. (2018). Monitoramento de áreas embargadas por desmatamento ilegal. Revista Brasileira de Cartografia, 70(5), 1595–1617. https://doi.org/10.14393/rbcv70n5-44566
NICFI - Norway International Climate and Forestry Initiative (2025). https://www.nicfi.no/
Oliveira, A. L. S. D., Nero, M. A., Tavares Júnior, J. R., Candeias, A. L. B., & Nóbrega, R. A. A. (2017). Comparação e validação da modelagem espacial de riscos de incêndios considerando diferentes métodos de predição. Boletim de Ciências Geodésicas, 23 (4), 556–577. https://doi.org/10.1590/s1982-21702017000400037
OSGeo. (2019). Opensource GIS history. https://wiki.osgeo.org/wiki/Open_Source_GIS_History.
Pereira, J. A S., & Tavares Junior, J. R. (2017). Classificação supervisionada e saldo de radiação para discriminação de alvos de superfície no entorno do reservatório de Itaparica - PE. Revista Brasileira de Cartografia, 69(6). https://doi.org/10.14393/rbcv69n6-44321
QGIS. QGIS versão “3.16.5 Hannover” (2021). https://qgis.org/en/site/forusers/alldownloads.html
Ribeiro, J. F., Walter, B. M. B., & José Felipe Ribeiro, E. C. (2008). As principais fitofissionomias do bioma cerrado. https://www.researchgate.net/publication/283072910_As_principais_fitofisionomias_do_bioma_Cerrado/link/5628c21f08ae04c2aeaeb5d9/download
Santos, A. R. S.; Peluzio, T. M. O.; Saito, N. S. (2010). Spring 5.1.2 Passo a passo: Aplicações práticas. Alegre, ES: CAUFES, 153p. Available in: https://www.mundogeomatica.com/livros/spring5x/livrospring512passopassoaplicacaopratica.pdf Accessed in: oct. 25th, 2024.
See, L., Laso Bayas, J., Schepaschenko, D., Perger, C., Dresel, C., Maus, V., Salk, C., Weichselbaum, J., Lesiv, M., McCallum, I., Moorthy, I., & Fritz, S. (2017). LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing, 9(7), 754. https://doi.org/10.3390/rs9070754
Silva, A. B. D., & Camelo, G. L. P. (2024). A percepção ambiental como ferramenta de análise no estudo dos impactos da atividade agrícola no município de Pitimbu/PB. Geografia Ensino & Pesquisa, 28, e84717. https://doi.org/10.5902/2236499484717
Wang, W., Tang, L., Zhang, Y., Cai, J., Chen, X., & Mao, X. (2025). Mapping Ecosystem Carbon Storage in the Nanling Mountains of Guangdong Province Using Machine Learning Based on Multi-Source Remote Sensing. Atmosphere, 16(8), 954. https://doi.org/10.3390/atmos16080954
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Geografia Ensino & Pesquisa

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Geografia – Ensino & Pesquisa will obtain the auctorial rights for all published texts. This also implies that the text can be published anywhere in the world, including all rights on renewal, expansion and dissemination of the contribution, as well as other subsidiary rights. The author’s get permission to publish the contribution in other medias, printed or digital, may be in Portuguese or translation, since the publication is credited to Revista Geografia – Ensino & Pesquisa.The journal Geografia – Ensino & Pesquisa will obtain the auctorial rights for all published texts. This also implies that the text can be published anywhere in the world, including all rights on renewal, expansion and dissemination of the contribution, as well as other subsidiary rights. The author’s get permission to publish the contribution in other medias, printed or digital, may be in Portuguese or translation, since the publication is credited to Revista Geografia – Ensino & Pesquisa.


