Use of the Random Forest classifier to Classify Land Use and Cover using Sentinel 1 and 2 Data in a rural region in the Atlantic Forest biome

Authors

DOI:

https://doi.org/10.5902/2236499487967

Keywords:

Random Forest, Land Use and Land Cover, Image Classification, SAR, Optical

Abstract

The use of land use and land cover maps is essential for environmental monitoring, and for this purpose, it is necessary to use remote sensing techniques. With this in mind, this study aimed to use the Backscatter Coefficient, Polarimetric Decomposition and Interferometric Coherence attributes of the Sentinel 1 sensor and the R, G, B, NIR bands and NDVI and SAVI vegetation indices of the Sentinel 2 sensor to identify the best combination of input variables for the Random Forest (RF) classification algorithm using accuracy, in an area in the “Campos de Cima da Serra,” belonging to the Atlantic Forest biome. The study identified that the use of the three Sentinel 1 attributes together with the optical bands of Sentinel 2 had better accuracy (93%), although the use of only the optical bands obtained 89% accuracy. However, when using only SAR attributes, the lowest accuracy was obtained (67%). The development of this methodology will serve as a basis for the continuation of this research, using more robust techniques such as time series analysis via SITS (Satellite Image Time Series Analysis), with the generation of results for monitoring the Atlantic Forest in the southern region of the country and subsidy for monitoring tests of the pampa biome, due to its high capacity for analyzing time series from different platforms in an open-source package.

Downloads

Download data is not yet available.

Author Biographies

Andressa Kossmann Ferla, Instituto Nacional de Pesquisas Espaciais https://ror.org/04xbn6x09

Sanitary and Environmental Engineer from the Federal University of Santa Maria - UFSM - FW, Master in Environmental Science and Technology from UFSM-FW, member of the Vegetation Remote Sensing Laboratory - SERVEG (COESU/INPE-MCTI), Scholarship Holder of the Institutional Training Program - PCI - INPE. Has experience in Remote Sensing, Random Forest classifiers, SVM, land use and occupation map, fire risk map, environmental monitoring.

Tatiana Mora Kuplich, Instituto Nacional de Pesquisas Espaciais https://ror.org/04xbn6x09

Graduated in Biological Sciences from the Federal University of Rio Grande do Sul, specialization in Space Organization (DESS in Aménagement des Territoires) from Université Toulouse II in France, Master's degree in Remote Sensing from the National Institute for Space Research (INPE, São José dos Campos ) and PhD from the School of Geography at the University of Southampton in England. In 2002, she was approved in a competition for the Remote Sensing Division (DSR) of INPE in São José dos Campos. In 2008, she transferred to the Southern Space Coordination (COESU), an INPE unit in Santa Maria (RS), where she was Coordinator from August 2018 to October 2020. She completed a Post-Doctorate at the VIPER Laboratory (Visualization and Image Processing for Environmental Research) by Dar Roberts at the University of California Santa Barbara, USA. She is a professor and advisor for the Postgraduate Course in Remote Sensing at the Federal University of Rio Grande do Sul (UFRGS). She works on the study of Brazilian biomes through data and remote sensing techniques.

Igor da Silva Narvaes, Instituto Nacional de Pesquisas Espaciais https://ror.org/04xbn6x09

I hold a degree in Forest Engineering from the Federal University of Santa Maria (2000), a Master's degree in Forest Engineering from the Federal University of Santa Maria (2004) and a PhD in Remote Sensing from the National Institute for Space Research (2010). He is currently a Senior Researcher at the Southern Space Coordination (COESU) of the National Institute for Space Research (INPE). I have experience in Geosciences, Remote Sensing and Geoprocessing emphasis, working mainly on the following topics: remote sensing, forest biomass modelling, classification and optical and SAR polarimetry data.

References

ADRIAN, J.; SAGAN, V.; MAIMAITIJIANG, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, [S. l.], v. 175, p. 215–235, mai. 2021. DOI: 10.1016/j.isprsjprs.2021.02.018.

ALIN, A. Multicollinearity. WIREs Interdisciplinary Reviews: Computational Statistics, [S. l.], v. 2, n. 3, p. 370–374, 25 mai. 2010.

ALJEBREEN, M et al. Land Use and Land Cover Classification Using River Formation Dynamics Algorithm With Deep Learning on Remote Sensing Images. IEEE Access, [S. l.], v. 12, n. 99, p. 11147-11156, 2024. DOI: 10.1109/ACCESS.2023.3349285.

AL-RUZOUQ, R. et al. Multi-scale correlation-based feature selection and random forest classification for LULC mapping from the integration of SAR and optical Sentinel images. In: Remote Sensing Technologies and Applications in Urban Environments, 4., 2019, Strasbourg. Proceedings... Strasbourg: SPIE, 2019. p. 1. DOI: 10.1117/12.2533123.

BELGIU, M.; DRĂGUŢ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, [S. l.], v. 114, p. 24–31, abr. 2016. DOI: 10.1016/j.isprsjprs.2016.01.011.

BOLDRINI, I. L. D. Biodiversidade Dos Campos Do Planalto Das Araucárias. Brasília: Ministério do Meio Ambiente, 2009.

BREIMAN, L. Random Forests. Machine Learning, [S. l.], v. 45, p. 5–32, 2001. DOI: 10.1023/A:1010933404324.

BRESSANE, A.; GOMES, I. G.; DA ROSA, G. C. S.; BRANDELIK, C. C. M.; SILVA, M. B.; SIMINSKI, A.; NEGRI, R. G. Computer-aided classification of successional stage in subtropical Atlantic Forest: a proposal based on fuzzy artificial intelligence. Environ Monit Assess, [S. l.], v. 195, n. 1, p. 184, 2023. DOI: 10.1007/s10661-022-10799-x.

CHACHONDHIA, P.; SHAKYA, A.; KUMAR, G. Performance evaluation of machine learning algorithms using optical and microwave data for LULC classification. Remote Sensing Applications: Society and Environment, [S. l.], v. 23, p. 100599, ago. 2021. DOI: 10.1016/j.rsase.2021.100599.

CHAVES, M. E. D.; SOARES, A. R.; MATAVELI, G. A. V; SANCHEZ, A. H.; SANCHES, I. D. A Semi-Automated Workflow for LULC Mapping via Sentinel-2 Data Cubes and Spectral Indices. Automation, [S. l.], v. 4, n. 1, p. 94–109, 23 fev. 2023. DOI: 10.3390/automation4010007.

CLERICI, N.; VALBUENA CALDERÓN, C. A.; POSADA, J. M. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: a case study in the lower Magdalena region, Colombia. Journal of Maps, [S. l.], v. 13, n. 2, p. 718–726, 30 nov. 2017. DOI 10.1080/17445647.2017.1372316.

CONGALTON, R. G. Assessing the accuracy of Remotely Sensed data: principles and practices. Boca Raton: Lewis, 1999. p. 34-46.

CONGALTON, R. G.; MEAD, R. A. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering and Remote Sensing, [S. l.], v. 49, n. 1, p. 69-74, 1983.

DINIZ, J. M. F. DE S.; GAMA, F. F.; ADAMI, M. Evaluation of polarimetry and interferometry of sentinel-1A SAR data for land use and land cover of the Brazilian Amazon Region. Geocarto International, [S. l.], v. 37, n. 5, p. 1482–1500, 4 mar. 2022. DOI: 10.1080/10106049.2020.1773544.

FENG, Q.; YANG, J.; ZHU, D.; LIU, J.; GUO, H.; BAYARTUNGALAG, B.; LI, B. Integrating Multitemporal Sentinel-1/2 Data for Coastal Land Cover Classification Using a Multibranch Convolutional Neural Network: A Case of the Yellow River Delta. Remote Sensing, [S. l.], v. 11, n. 9, p. 1006, 28 abr. 2019. DOI: 10.3390/rs11091006.

GU, Z.; ZENG, M. The use of artificial intelligence and satellite remote sensing in land cover change detection: review and perspectives. Sustainability, [S. l.], v. 16, n. 1, p. 274, 2023. DOI: 10.3390/su16010274.

GUPTA, P.; SHUKLA, D. P. Combined Optical and SAR remote sensing for LULC mapping of Imphal valley using Machine Learning Algorithm. In: 2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING (MIGARS), 2023, [S. l.]. Proceedings... [S. l.]: IEEE, 27 jan. 2023. DOI: 10.1109/MIGARS57353.2023.10064582.

ESA. Copernicus Open Access Hub. 2024. Disponível em: https://scihub.copernicus.eu/. Acesso em: 29 nov. 2024.

HUDSON, W. D. Correct Formulation of the Kappa Coefficient of Agreement. Photogrammetric Engineering & Remote Sensing, [S. l.], v. 53, n. 4, p. 421-422, 1987.

HUETE, A. R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, [S. l.], v. 25, n. 3, p. 295-309, 1988. DOI: 10.1016/0034-4257(88)90106-X.

KHALIL, R. Z.; SAAD-UL-HAQUE. InSAR coherence-based land cover classification of Okara, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, [S. l.], v. 21, n. supl. 1, p. S23–S28, jul. 2018. DOI 10.1016/j.ejrs.2017.08.005.

LIMA, D. R. M.; DLUGOSZ, F. L.; IURK, M. C.; PESCK, V. A. Uso de NDVI e SAVI para Caracterização da Cobertura da Terra e Análise Temporal em Imagens RapidEye. Revista Espacios, online, v. 38, n. 36, p. 7-21, 2017.

MIRANDA, M. S.; JÚNIOR V. A. S.; KÖRTING T. S.; MONTEIRO E. C. S.; E SILVA J. Q. AI4LUC: deep learning and automated mask labelling to support land use and land cover mapping in the Cerrado biome, Remote Sensing Letters, [S. l.], v. 15, n 8, p. 850–860, ago. 2024. DOI: 10.1080/2150704X.2024.2382845.

MISHRA, D.; PATHAK, G.; SINGH, B. P.; MOHIT; SIHAG, P.; RAJEEV; SINGH, K.; SINGH, S. Crop classification by using dual-pol SAR vegetation indices derived from Sentinel-1 SAR-C data. Environmental Monitoring and Assessment, [S. l.], v. 195, n. 1, p. 115, 2023. DOI: 10.1007/s10661-022-10591-x.

MONSALVE-TELLEZ, J. M.; TORRES-LEÓN, J. L.; GARCÉS-GÓMEZ, Y. A. Evaluation of SAR and Optical Image Fusion Methods in Oil Palm Crop Cover Classification Using the Random Forest Algorithm. Agriculture, [S. l.], v. 12, n. 7, p. 955, 1 jul. 2022. DOI: 10.3390/agriculture12070955.

NAIK, N.; CHANDRASEKARAN, K.; MEENAKSHI SUNDARAM, V.; PANNEER, P. Assessment of land use and land cover change detection and prediction using deep learning techniques for the southwestern coastal region, Goa, India. Environ Monit Assess, [S. l.], v. 196, n. 6, p. 1-34, 2024. DOI: 10.1007/s10661-024-12598-y.

PARADELLA, W. R.; MURA, J. C.; GAMA, F. F. Monitoramento DInSAR para mineração e geotecnia. 1. ed. São Paulo: Oficina de Textos, 2021.

PEDREGOSA et al. Scikit-learn: Machine Learning in Python. Journal of machine learning research, [S. l.], v. 12, n. 85, p. 2825-2830, 2011.

RACZKO, E.; ZAGAJEWSKI, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. European Journal of Remote Sensing, [S. l.], v. 50, n. 1, p. 144–154, 9 jan. 2017. DOI: 10.1080/22797254.2017.1299557.

RENNÓ, C. D.; SILVA, T. S. F. Planilha: Índice Kappa. 2023. Disponível em: https://www.dpi.inpe.br/~camilo/estatistica/xls/kappa10cond.xlsx. Acesso em: 24 outubro 2023.

ROUSE JR, J. W.; HASS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the Great Plains with ERTS. In: PROCEEDINGS OF THE THIRD EARTH RESOURCES TECHNOLOGY SATELLITE-1 SYMPOSIUM, 3., 1973, Washington D.C. Anais... Washington D.C.: NASA. p. 309.

SOLÓRZANO, J. V.; MAS, J. F.; GALLARDO-CRUZ, J. A.; GAO, Y.; DE OCA, A. F. M. Deforestation detection using a spatio-temporal deep learning approach with synthetic aperture radar and multispectral images. ISPRS Journal of Photogrammetry and Remote Sensing, [S. l.], v. 199, p. 87-101, 2023. DOI: 10.1016/j.isprsjprs.2023.03.017.

SOUTHWORTH, J.; SMITH, A. C.; SAFAEI, M.; RAHAMAN, M.; ALRUZUQ, A.; TEFERA, B. B.; ... & HERRERO, H. V. Machine learning versus deep learning in land system science: a decision-making framework for effective land classification. Frontiers in Remote Sensing, [S. l.], v. 5, p. 1-25, 2024. DOI: 10.3389/frsen.2024.1374862.

SOUZA, C.; AZEVEDO, T. MapBiomas general “Handbook”. São Paulo: MapBiomas, 2017.

SHEYKHMOUSA, M.; MAHDIANPARI, M.; GHANBARI, H.; MOHAMMADIMANESH, F.; GHAMISI, P.; HOMAYOUNI, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, [S. l.], v. 13, p. 6308–6325, 2020. DOI: 10.1109/JSTARS.2020.3026724.

SCHULZ, D.; YIN, H.; TISCHBEIN, B.; VERLEYSDONK, S.; ADAMOU, R.; KUMAR, N. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS Journal of Photogrammetry and Remote Sensing, [S. l.], v. 178, p. 97–111, ago. 2021. DOI 10.1016/j.isprsjprs.2021.06.005.

TALUKDAR, S.; SINGHA, P.; MAHATO, S.; PAL, S.; LIOU, Y. A.; RAHMAN, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations— A Review. Remote Sensing, [S. l.], v. 12, n. 7, p. 1135, 2 abr. 2020. DOI: 10.3390/rs12071135.

TAVARES, P.; BELTRÃO, N. E. S.; GUIMARÃES, U. S.; TEODORO, A. C. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors, [S. l.], v. 19, n. 5, p. 1140, 6 mar. 2019. DOI: 10.3390/s19051140.

TRINDADE, P. M. P.; PEIXOTO, D. W. B.; SILVEIRA, G. V.; KUPLICH, T. M.; NARVAES, I. S. Mapeamento de cobertura e uso da terra no bioma Pampa utilizando diferentes sensores orbitais e classificador Random Forest. GEOgrafias, [S. l.], v. 19, n. 2, jul./dez. 2023. DOI: 10.35699/2237-549X.2023.46915.

WANG, W.; GADE, M.; STELZER, K.; KOHLUS, J.; ZHAO, X.; FU, K. A Classification Scheme for Sediments and Habitats on Exposed Intertidal Flats with Multi-Frequency Polarimetric SAR. Remote Sensing, [S. l.], v. 13, n. 3, p. 360, 2021. DOI: 10.3390/rs13030360.

WANG, J.; BRETZ, M.; DEWAN, M. A. A.; & DELAVAR, M. A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Science of The Total Environment, v. 822, p. 153559, 2022. DOI: 10.1016/j.scitotenv.2022.153559.

ZUHLKE, M.; FOMFERRA, N., BROCKMANN, C., PETERS, M., VECI, L., MALIK, J., & REGNER, P. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox. In: SENTINEL-3 FOR SCIENCE WORKSHOP, 3., 2015, Venice. Proceedings... Venice: ESA, 2015. p. 21.

Published

2025-03-10

How to Cite

Ferla, A. K., Kuplich, T. M., & Narvaes, I. da S. (2025). Use of the Random Forest classifier to Classify Land Use and Cover using Sentinel 1 and 2 Data in a rural region in the Atlantic Forest biome. Geografia Ensino & Pesquisa, 29. https://doi.org/10.5902/2236499487967

Issue

Section

Geoinformação e Sensoriamento Remoto em Geografia