Root density of Megathyrsus maximus BRS Quênia and Urochloa brizantha BRS Piatã in silvipastorl systems
DOI:
https://doi.org/10.5902/2316980X84367Keywords:
Livestock-forest integration, Root density, Fodder plantAbstract
The objective of this study is to determine the root density of Megathyrsus maximus and Urochloa brizantha forages at a depth of 20 cm alone, in relation to their distances from the tree component in two systems of livestock-forest integration with two entities. For this study, the following livestock-forest integration systems were carried out: a system with 3 years of composting by AEC-043 eucalypts clones spaced in strips of simple lines of 15x2 m and the forage component Megathyrsus maximus cv. Quenia; The other system requires 2 years of growth and AEC-2034 eucalyptus clones with the same forest root and forage component Urochloa brizantha BRS Piatã. Five transects were collected randomly in each of two livestock-forest integration systems and measured 5 distances from the tree component for root collection in the dry period. The roots are separated and dried only for density evaluation. In the area as a livestock-forest integration system with 2 years of life with eucalypts clones AEC-2043 and Urochloa brizantha forage, a higher average production of total density of roots at a distance of 5 meters from the tree component, with value of 11.75 g and less root density at zero distance with 8.63 g. In the 3-year livestock-forest integration system, with AEC-043 eucalyptus clones and Megathyrsus maximus forage component, the highest concentration of root density occurred at distance zero with 10.23 g and lowest root density at distance 5 m with 4.45 g. In both systems, eucalyptus influenced the root system of the forage grass.
Downloads
References
ALMEIDA, R. E. M. et al. Corn yield, forage production and quality affected by methods of intercropping corn and Panicum maximum. Pesquisa Agropecuária Brasileira, Goiânia, v. 52, n. 3, p. 170-176, 2017. Disponível em: https://www.scielo.br/j/pab/a/dx3HZVkBTDLHNNz4fZ7HwVd/?format=pdf&lang=en. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1590/s0100-204x2017000300004
ALVES, B. J. R.; MADARI, B. E.; BODDEY, R. M. Integrated crop–livestock–forestry systems: prospects for a sustainable agricultural intensification. Nutrient Cycling in Agroecosystems, Holanda, v. 108, n. 1, p. 1–4, 2017. Disponível em: https://link.springer.com/article/10.1007/s10705-017-9851-0. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1007/s10705-017-9851-0
AULER, A. C. et al. Effects of surface-applied and soil-incorporated lime on some physical attributes of a Dystrudept soil. Soil Use and Management, Reino Unido, v. 33, n. 1, p. 129– 140, 2017. Disponível em: https://bsssjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/sum.12330. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1111/sum.12330
BENJAMIN, J. G.; NIELSEN, D. C. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Research, Washigton, v. 97, n. 2–3, p. 248-253, 2006. Disponível em: https://www.ars.usda.gov/ARSUserFiles/30100000/2006Documents/2006/442%202006%20Benjamin%20FCR.pdf. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1016/j.fcr.2005.10.005
BUENO, P. A. A. et al. Microbiological indicators of recovery soil quality in a agroforestry system. Acta Brasiliensis, Patos, v. 2, n. 2, p. 40-44, 2018. Disponível em: http://revistas.ufcg.edu.br/ActaBra/index.php/actabra/article/view/96/37. Acesso em: 5 maio 2020. DOI: https://doi.org/10.22571/2526-433896
CAMPOS, A.; CRUZ, L.; ROCHA, S. Mass, nutrient pool, and mineralization of litter and fine roots in a tropical mountain cloud forest. Science of the Total Environment, Amsterdam, v. 575, p. 876–886, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27712868/. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.126
CARDOSO, M. R. D.; MARCUZZO, F. F. N.; BARROS, J. R. Classificação climática de KÖPPEN-GEIGER para o estado de Goiás e o Distrito Federal. Acta Geográfica, Normandia, v. 8, n. 16, p. 40-55, 2014. DOI: https://doi.org/10.18227/2177-4307.acta.v8i16.1384
CLIMATE-DATA.ORG. Acompanhamento do clima. [S. l], 2017. Disponível em: https://pt.climate-data.org/location/312849/. Acesso em: 5 maio 2020.
DEFRENET, E. et al. Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age. Annals Botany, London, v. 118, p. 833–85, 2016. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27551026/. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1093/aob/mcw153
DURR, P. A.; RANGEL, J. The response of Panicum maximum to a simulated subcanopy. Tropical Grasslands, Sidney, v. 34, p. 110-117, 2000.
FORRESTER, D. I. et al. Mixed-species plantations of Eucalyptus with nitrogen-fifixing trees: A review. Forest Ecology and Management, Amsterdam, v. 233, p. 211–230, 2006. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378112706003252. Acesso em: 5 maio 2020. DOI: https://doi.org/10.1016/j.foreco.2006.05.012
GIL, J.; SIEBOLD, M.; BERGER, T. Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agriculture, Ecosystems & Environment, London, v. 199, p. 394–406, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S016788091400471X. Acesso em: 10 jun. 2022. DOI: https://doi.org/10.1016/j.agee.2014.10.008
GONÇALVES, J. L. M.; MIRANDA, S. L. M. O sistema radicular das arvores. In: GONÇALVES, J. L. M.; BENEDETTI, V. (Ed.). Nutrição e Fertilização Florestal. 1. ed. Piracicaba: IPEF, 2000. p. 221-267.
GREGORY, P. Plant roots: growth, activity and interaction with soils. Blackwell Publishing, London, v. 100, p. 151-154, 2006. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735306/pdf/mcm099.pdf. Acesso em: 10 jun. 2022.
GUENNI, O.; SEITER, S.; FIGUEROA, R. Growth responses of three Brachiaria species to light intensity and nitrogen supply. Tropic Grasslands, Cali, v. 42, p. 75–87, 2008. Disponível em: http://saber.ucv.ve/bitstream/10872/3036/1/2008.1.pdf. Acesso em: 6 maio de 2023.
HAMMER, Ø. Paleontological Statistics Version 3.15. Reference manual. Natural History Museum. University of Oslo, p.253, 2017.
HIRTE, J. et al. Maize nd wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Research, Amsterdam, v. 216, p. 197–208, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0378429017317100. Acesso em: 10 jun. 2022. DOI: https://doi.org/10.1016/j.fcr.2017.11.023
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Inaciolândia-GO. Rio de Janeiro: IBGE, 2010. Disponível em: https://cidades.ibge.gov.br/brasil/go/inaciolandia/panorama. Acesso em: 10 jun. 2018.
JANK. L. et al. O capim-BRS Quênia (Panicum maximum Jacq.) na diversificação e intensificação das pastagens. Campo Grande, MS: Embrapa de Corte, 2017. 17 p. (EMBRAPA – CNPGC. Comunicado Técnico 138). Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/165106/1/Capim-BRS-Quenia-Panicum-maximum-Jacq..pdf. Acesso em: 5 maio 2020.
LACLAU, J.P. et al. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Frontiers in Plant Science, Lausanne, v. 4, p. 1-12, 2013. Disponível em: https://www.frontiersin.org/articles/10.3389/fpls.2013.00243/full. Acesso em: 10 jun. 2022. DOI: https://doi.org/10.3389/fpls.2013.00243
MONTEJO-MARTÍNEZ, D. et al. Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agroforestry Systems, Montpellier, v. 94, p. 843-855, 2019. Disponível em: https://link.springer.com/article/10.1007/s10457-019-00457-6. Acesso em: 10 jun. 2022. DOI: https://doi.org/10.1007/s10457-019-00457-6
MORAES, M. T. et al. Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, Amsterdam, v. 155, n. 1, p. 351–362, 2016. Disponível em: https://www.sciencedirect.com/science/article/pii/S0167198715001713. Acesso em: 11 jun. 2022. DOI: https://doi.org/10.1016/j.still.2015.07.015
OLIVEIRA, F. L.; SOUTO, S. M. Efeito no Sombreamento no Crescimento Inicial de Gramíneas Forrageiras Tropicais. Pesquisa Agropecuária Gaúcha, Porto Alegre, v. 7, n. 2, p. 221-226, 2001. Disponível em: http://revistapag.agricultura.rs.gov.br/ojs/index.php/revistapag/article/view/364/333. Acesso em: 11 jun. 2022.
PACIULLO, D. S. C. et al. Soil bulk density and biomass partitioning of Brachiaria decumbens in a silvopastoral system. Scientia Agricola, Piracicaba, v. 67, n. 5, p. 598–603, 2010. Disponível em: https://www.scielo.br/j/sa/a/BqVJKRNfx3dhCdT5DgFd3mD/?format=pdf&lang=en. Acesso em: 01 jun. 2023. DOI: https://doi.org/10.1590/S0103-90162010000500014
POFFENBARGER, H. et al. An economic analysis of integrated crop-livestock systems in Iowa, U.S.A. Agricultural Systems, Amsterdam, v. 157, p. 51–69, 2017. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0308521X17302263. Acesso em: 01 jun. 2023. DOI: https://doi.org/10.1016/j.agsy.2017.07.001
REIS, J. C. et al. Integração Lavoura-Pecuária-Floresta no Brasil: uma estratégia de agricultura sustentável baseada nos conceitos da Green Economy Initiative. Sustentabilidade em Debate, Brasília, v. 7, p. 58-73, 2016. Disponível em: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1051659/integracao-lavoura-pecuaria-floresta-no-brasil-uma-estrategia-de-agricultura-sustentavel-baseada-nos-conceitos-da-green-economy-initiative. Acesso em: 01 jun. 2023. DOI: https://doi.org/10.18472/SustDeb.v7n1.2016.18061
ROSADO, P. B. H. et al. Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotropical, Campinas, v.11, n. 3, p. 203–209, 2011. Disponível em: https://doi.org/10.1590/S1676-06032011000300018. Acesso em: 10 jun. 2023. DOI: https://doi.org/10.1590/S1676-06032011000300018
SARTO, M. V. M. et al. Root and shoot interactions in a tropical integrated crop–livestock–forest system. Agricultural Systems, Amsterdam, v. 181, n. 102796, 2020. Disponível em: https://www.scielo.br/j/bn/a/6xH9kxKGnrBqDcbjnmppDQk/?lang=en&format=pdf. Acesso em: 20 maio 2022. DOI: https://doi.org/10.1016/j.agsy.2020.102796
SANTOS, H. G. et al. Sistema Brasileiro de Classificação de Solos. 5. ed., rev. e ampl. Brasília, DF: Embrapa, 2018.
SIX, J. et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, Washington, v. 79, p. 7–31, 2004. Disponível em: https://www.sciencedirect.com/science/article/pii/S016719870400088. Acesso em: 20 maio 2021. DOI: https://doi.org/10.1016/j.still.2004.03.008
WHALLEY, W. R. et al. Structural differences between bulk and rhizosphere soil. Europen Journal of Soil Science, Rome, v. 56, p. 353–360, 2005. DOI: https://doi.org/10.1111/j.1365-2389.2004.00670.x
Published
How to Cite
Issue
Section
License
The Copyright of the articles published in the journal Ecologia e Nutrição Florestal / Ecology and Forest Nutrition belong to their respective author (s), with the rights of first publication assigned to the Journal. Every time an article is quoted, replicated in institutional repositories and / or personal or professional pages, a link to the article is available on the Enflo website.
Ecologia e Nutrição Florestal /Ecology and Forest Nutrition is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International https://creativecommons.org/licenses/by-nc/4.0/.