Implementação de um Modelo Bag of Features para Classificação de Frutas

Authors

  • Guilherme Henrique Galelli Christmann Universidade Federal de Santa Maria
  • Fabrício Julian Carini Montenegro Universidade Federal de Santa Maria
  • Ricardo Bedin Grando Universidade Federal de Santa Maria
  • Rodrigo da Silva Guerra Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2448190430228

Keywords:

Ciência da Computação, Machine Learning, Visão Computacional, Frutas e Vegetais

Abstract

This work explores a classic technique in computer vision, the Bag of Features (BoF) model, in a fruit and vegetable classification problem. There’s an increasing trend in the use of Neural Networks and Deep Learning techniques applied to the automation of processes and systems. This work goes against this trend, examining how a simpler Machine Learning (ML) model would perform. For this, we defined two scenarios, one in a more controlled environment with differences only in light and objects positions, and another with more background clutter. We show that, although the trend is to use bigger and more complex ML models, simpler techniques continue to be relevant in certain scenarios.

Downloads

Download data is not yet available.

References

Awrangjeb, M., Lu, G., and Fraser, C. S. (2012). Performance comparisons of contour-based corner detectors.IEEE Transactions on Image Processing, 21(9):4167–4179.

Caruana, R. and Niculescu-Mizil, A. (2006). An empirical comparison of supervisedlearning algorithms. InProceedings of the 23rd international conference on Machinelearning, pages 161–168. ACM.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.Machine learning, 20(3):273–297.

Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categoriza-tion with bags of keypoints. InWorkshop on statistical learning in computer vision,ECCV, volume 1, pages 1–2. Prague.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. InComputer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer SocietyConference on, volume 1, pages 886–893. IEEE.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012).Pattern classification. John Wiley &Sons.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature, 521(7553):436–444.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. InCom-puter vision, 1999. The proceedings of the seventh IEEE international conference on,volume 2, pages 1150–1157. Ieee.

Minaee, S., Wang, S., Wang, Y., Chung, S., Wang, X., Fieremans, E., Flanagan, S., Rath,J., and Lui, Y. W. (2017). Identifying mild traumatic brain injury patients from MRimages using bag of visual words.CoRR, abs/1710.06824.

Rocha, Anderson; Hauagge, D. C. W. J. G. S. (2010).Fruits/vegetablesimage data set collected on our local fruits and vegetables distribution cen-ter (ceasa).http://www.ic.unicamp.br/ ̃rocha/pub/downloads/tropical-fruits-DB-1024x768.tar.gz. Accessed: 2017-11-21.

Rui, Y., Huang, T. S., and Chang, S.-F. (1999). Image retrieval: Current techniques,promising directions, and open issues.Journal of visual communication and imagerepresentation, 10(1):39–62.

Sebastiani, F. (2002). Machine learning in automated text categorization.ACM computingsurveys (CSUR), 34(1):1–47.

Zhang, Y., Wang, S., Ji, G., and Phillips, P. (2014). Fruit classification using computervision and feedforward neural network.Journal of Food Engineering, 143:167 – 177.

Published

2018-10-22

How to Cite

Christmann, G. H. G., Montenegro, F. J. C., Grando, R. B., & Guerra, R. da S. (2018). Implementação de um Modelo Bag of Features para Classificação de Frutas. Revista ComInG - Communications and Innovations Gazette, 3(1), 70–80. https://doi.org/10.5902/2448190430228

Issue

Section

Artigos científicos