Large Language Models and the problem of algorithmic communicability
DOI:
https://doi.org/10.5902/2316882X91362Keywords:
Language models, Communicability, Artificial Intelligence, Algorithmic ethics, Language and powerAbstract
Large Language Models (LLMs) not only automate textual production but also reconfigure the very regimes of communicability in digital culture. By generating coherent and contextually appropriate texts, these models simulate comprehension and intentionality, challenging the boundaries between human cognition and statistical prediction. Drawing on advances in machine learning and natural language processing, this article offers a critical reading of LLMs through three axes: the technical foundations that sustain their operation; the sociocultural shifts they provoke in the concepts of language, authorship, and intelligence; and the ethical dilemmas associated with algorithmic bias, hallucinations, and system opacity. Far from being neutral tools, LLMs operate as discursive infrastructures that condense power disputes, reproduce epistemic inequalities, and destabilize classical models of subjectivity. The analysis suggests that, although immersed in the logic of cognitive extractivism, these models also open cracks for practices of resistance and symbolic reinvention.
Downloads
References
AGUIAR, Carlos. Farmacologia e Filosofia da Tecnologia: A contribuição do diálogo Fedro de Platão: O que nos faz pensar, v. 31, n. 53, p. 178–194, 2023.
AMARO, Ramon. Artificial Intelligence: warped, colorful forms and their unclear geometries. In: IO, Danae; COPLEY, Callum (orgs.). Schemas of Uncertainty: Soothsayers and Soft AI. Amsterdam: PUB/Sandberg Instituut, 2019. p. 69–90.
BOMMASANI, Rishi et al. On the opportunities and risks of foundation models. arXiv preprint, arXiv:2108.07258, 2021.
CASTRO, Eduardo Viveiros de. Máquinas sobrenaturais e outros habitantes da tríplice fronteira antropológica. Aion. Journal of Philosophy and Science, v. 1, n. 1, 30 out. 2024.
COECKELBERGH, Mark. Ética na inteligência artificial. São Paulo: Ubu Editora, 2023.
CRAWFORD, Kate. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. New Haven London: Yale University Press, 2022.
DELEUZE, Gilles; GUATTARI, Félix. Mille plateaux. Paris: Éditions de minuit, 1980.
FLORIDI, Luciano. AI as Agency Without Intelligence: on ChatGPT, Large Language Models, and Other Generative Models. Philosophy & Technology, v. 36, n. 1, p. 15, 2023.
GUNKEL, David J. AI for Communication. Boca Raton: CRC Press, 2024.
HANCOCK, Jeffrey T; NAAMAN, Mor; LEVY, Karen. AI-Mediated Communication: Definition, Research Agenda, and Ethical Considerations. Journal of Computer-Mediated Communication, v. 25, n. 1, p. 89–100, 2020
HEIDEGGER, Martin. A caminho da linguagem. Petrópolis: Vozes, 2003.
HEIDEGGER, Martin. Pensées directrices. Sur la genèse de la métaphysique, de la science et de la technique moderne. Paris: Seuil, 2019.
HUI, Yuk. Machine and Sovereignty: For a Planetary Thinking. Minneapolis: Univ Of Minnesota Press, 2024.
LEMOS, André Luiz Martins. Erros, falhas e perturbações digitais em alucinações das IA generativas: tipologia, premissas e epistemologia da comunicação. MATRIZes, v. 18, n. 1, p. 75–91, 2024.
MACKENZIE, Adrian. Machine learners: archaeology of a data practice. Cambridge, Massachusetts: The MIT Press, 2017.
MALABOU, Catherine. Morphing Intelligence: From IQ Measurement to Artificial Brains. New York: Columbia University Press, 2021.
NOBLE, Safiya Umoja. Algorithms of oppression: how search engines reinforce racism. New York: New York university press, 2018.
PASQUINELLI, Matteo; JOLER, Vladan. The Nooscope Manifested: Artificial Intelligence as Instrument of Knowledge Extractivism. AI & Society, v. 35, n. 4, p. 855–868, 2020.
PLATÃO. Fedro - Φαίδρος. Belém: EDUFPA, 2011.
RICAURTE, Paola. Ethics for the majority world: AI and the question of violence at scale. Media, Culture & Society, v. 44, n. 4, p. 726–745, 2022.
STIEGLER, Bernard. Sortir de l’anthropocène. Multitudes, v. 60, n. 3, p. 137, 2015.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores de textos aprovados pelos pareceristas de Cadernos de Comunicação cedem automaticamente e sem qualquer tipo de ônus o direito à primeira publicação do material submetido.


