Is sodium hexametaphosphate effective in preventing metal damage in removable dentures immersed in hypochlorite cleaner?

Autores/as

  • Mariana Marquezan Universidade Federal de Santa Maria, Santa Maria, RS
  • Tiago Pfaff Fernandes Universidade Federal de Santa Maria, Santa Maria, RS
  • Liliana Gressler May Universidade Federal de Santa Maria, Santa Maria, RS
  • Katia Olmedo Braun Universidade Federal de Santa Maria, Santa Maria, RS

DOI:

https://doi.org/10.5902/2236583422561

Palabras clave:

Orthodontic Anchorage Procedures, Orthodontic appliances, Saccharomyces cerevisiae

Resumen

The aim of this study was to evaluate if sodium hexametaphosphate (NaPO3)n is effective in preventing surface changes in Co-Cr-Mo alloy when immersed in cleansing solutions of 0.5% sodium hypochlorite (NaOCl). Thirty samples were randomly divided in to three groups (n=10) according to immersion solution: G1- distilled water (control), G2- 0.5% NaOCl, and G3- 0.5% NaOCl solution containing (NaPO3)n. Samples were evaluated before immersion (T0), 10 minutes (T1), 20 minutes (T2), and 60 minutes after immersion (T3) through Scanning Electron Microscopy (SEM) and rugosimeter. SEM showed little surface alteration in G1, dark stains in G2 and stains suggestive of a thin white film deposition in G3. The roughness analysis showed statistical significance between G1 and G2 (P≤0.05). There was also an increase in roughness in T2 and T3 (P≤0.05). (NaPO3)n protected the alloy from the harmful effects of 0.5% NaOCl, which caused surface alteration and increased roughness.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariana Marquezan, Universidade Federal de Santa Maria, Santa Maria, RS

Professor UFSM

Tiago Pfaff Fernandes, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação em Odontologia pela Universidade Federal de Santa Maria (2005) e Pós-Graduação, em nível de Especialização, em Endodontia pelo Centro Universitário do Norte Paulista (2007).

Liliana Gressler May, Universidade Federal de Santa Maria, Santa Maria, RS

É Professora Adjunta das Disciplinas de Prótese Dentária do Departamento de Odontologia Restauradora da UFSM, desde 2004.

Katia Olmedo Braun, Universidade Federal de Santa Maria, Santa Maria, RS

Atualmente atua como professora titular da Universidade Federal de Santa Maria.

Citas

da Cunha AC, Marquezan M, Lima I, et al. Influence of bone architecture on the primary stability of different mini-implant designs. American Journal of Orthodontics and Dentofacial Orthopedics 2015;147(1):45-51.

Baumgaertel S. Temporary skeletal anchorage devices: the case for miniscrews. Am J Orthod Dentofacial Orthop 2014;145(5):558-64.

Morais LS, Serra GG, Muller CA, et al. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. ActaBiomater 2007;3(3):331-9.

Meyer U, Buhner M, Buchter A, et al. Fast element mapping of titanium wear around implants of different surface structures. Clin Oral Implants Res 2006;17(2):206-11.

Bezerra RM, de Souza PCRD, Ramires I, Bottino MA, Guastaldi AC. Corrosion resistance and microstructure of the c.p.Ti welded by laser applyed for prosthesis supported by implants. EcleticaQuimica 1999;24:113-24.

Hanawa T. Metal ion release from metal implants. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2004;24(6-8):745-52.

Marino CE, de Oliveira EM, Rocha RC, Biaggio SR. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media. Corrosion Science 2001;43(8):1465-76.

House K, Sernetz F, Dymock D, Sandy JR, Ireland AJ. Corrosion of orthodontic appliances--should we care? Am J Orthod Dentofacial Orthop 2008;133(4):584-92.

Sedarat C, Harmand MF, Naji A, Nowzari H. In vitro kinetic evaluation of titanium alloy biodegradation. J Periodontal Res 2001;36(5):269-74.

Weingart D, Steinemann S, Schilli W, et al. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg 1994;23(6 Pt 2):450-2.

Blaya MG, Blaya DS, Mello P, Flores EMM, Hirakata LM. Titanium alloy miniscrews for orthodontic anchorage: an in vivo study of metal ion release. Rev Odonto Cienc 2011;26(3):209-14.

Garcia-Alonso MC, Saldana L, Valles G, et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 2003;24(1):19-26.

Saldana L, Barranco V, Garcia-Alonso MC, et al. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. Journal of Biomedical Materials Research Part A 2006;77A(2):220-29.

Malkoc S, Ozturk F, Corekci B, Bozkurt BS, Hakki SS. Real-time cell analysis of the cytotoxicity of orthodontic mini-implants on human gingival fibroblasts and mouse osteoblasts. Am J Orthod Dentofacial Orthop 2012;141(4):419-26.

Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials 2002;23(9):1995-2002.

Al-MayoufAM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Materials Chemistry and Physics 2004;86(2-3):320-29.

Mabilleau G, Bourdon S, Joly-Guillou ML, et al. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. ActaBiomater 2006;2(1):121-9.

Gioka C, Bourauel C, Zinelis S, et al. Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent Mater 2004;20(7):693-700.

Rodrigues AV, Oliveira NT, dos Santos ML, Guastaldi AC. Electrochemical behavior and corrosion resistance of Ti-15Mo alloy in naturally-aerated solutions, containing chloride and fluoride ions. J Mater Sci Mater Med 2015;26(1):5323.

Qiu KJ, Liu Y, Zhou FY, et al. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications. ActaBiomater 2015;15:254-65.

Perego P, Howell SB. Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. ToxicolApplPharmacol 1997;147(2):312-8.

Avery SV. Metal toxicity in yeasts and the role of oxidative stress. Advances in Applied Microbiology, Vol 49 2001;49:111-42.

De Freitas J, Wintz H, Kim JH, et al. Yeast, a model organism for iron and copper metabolism studies. Biometals 2003;16(1):185-97.

Poletto NP, Rosado JO, Bonatto D. Evaluation of cytotoxic and cytostatic effects in Saccharomyces cerevisiae by poissoner quantitative drop test. Basic ClinPharmacolToxicol 2009;104(1):71-5.

Pinto AV, Deodato EL, Cardoso JS, et al. Enzymatic recognition of DNA damage induced by UVBphotosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: evidence for oxidatively DNA damage generation. Mutat Res 2010;688(1-2):3-11.

Xu C, Wang J, Gao Y, et al. The anthracenedione compound bostrycin induces mitochondria-mediated

Descargas

Publicado

2018-04-18

Cómo citar

Marquezan, M., Fernandes, T. P., May, L. G., & Braun, K. O. (2018). Is sodium hexametaphosphate effective in preventing metal damage in removable dentures immersed in hypochlorite cleaner?. Saúde (Santa Maria), 44(1). https://doi.org/10.5902/2236583422561

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.