Esta é uma versão desatualizada publicada em 2021-04-08. Leia a versão mais recente.

Proposição de uma métrica ambiental holística baseada em indicadores ambientais

Autores

DOI:

https://doi.org/10.5902/2236117064032

Palavras-chave:

Métrica ambiental holística, Química sustentável, sustentabilidade, Química verde, Química Ambiental

Resumo

Não há dúvida de que alcançar a sustentabilidade é essencial. O uso
racional dos recursos naturais é extremamente importante para o
desenvolvimento humano. Com o passar dos anos, essa preocupação levou
várias instituições a elaborarem legislações e protocolos internacionais,
como o protocolo de Kyoto, para satisfazer as condições de
sustentabilidade. A Agenda 2030 configura como sendo o instrumento mais
recente de medidas propostas para atender a essas condições. Nesse
contexto, a atividade humana relacionada à Química ganha destaque:

garantir todos os aspectos sustentáveis em um procedimento é um grande
desafio. A avaliação da Sustentabilidade em Química é realizada por
cálculos de métricas verdes, cuja utilidade é melhor aproveitada na
comparação de procedimentos do que em uma avaliação de procedimento
único. Devido aos problemas da utilização de métricas, relacionadas a
simplificações que geram pseudo-resultados, necessidade de numerosos
cálculos mal-interpretados e adoção incorreta de métricas, neste artigo é
proposta uma métrica ambiental que atende às necessidades atuais
relacionadas ao consumo de materiais e energia e à avaliação da
sustentabilidade de procedimentos químicos. A métrica foi elaborada com
o objetivo de atender todos os requisitos ambientais de sustentabilidade
química de forma simplificada e confiável, com base em pesquisa
bibliográfica e experiência acadêmica. A elaboração da métrica possui uma
abordagem combinada, em que são estabelecidos valores de referência
para os principais indicadores de sustentabilidade, utilizando Soft System
Methodology (SSM).

Downloads

Não há dados estatísticos.

Referências

AGEE, B. M.; MULLINS, G.; BIERNACKI, J. J.; SWARTLING, D. J. Wolff–Kishner reduction reactions using a solar irradiation heat source and a green solvent system. Green Chem. Lett. Rev. 2014;7(4):383-392.

AKEN, K. V.; STREKOWSKI, L.; PATINY, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. [Internet]. 2006 [cited 2021 jan 28];2(3). Available from: https://doi.org/10.1186/1860-5397-2-3

AZAMBUJA, M. E. Comparativo de métricas de sustentabilidade [dissertation]. Porto Alegre: Departamento de Engenharia Química/UFRS; 2013.

BARE, J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Techn. Environ. Policy 2011;13:687-696.

BASTIAANSSEN, W. G. M.; STEDUTO, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ. 2017;575:595-611.

CALVO-FLORES, F. G. Sustainable Chemistry Metrics. ChemSusChem 2009;2(10):905-919.

CARTER, W. P. L. Estimation of upper limit maximum incremental reactivities [Internet]. In: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment – Final Report to California Air Resources Board. Summary of upper limit MIR estimates for the SAPRC-99 mechanism dataset (Appendix D), 2000a. [cited 2021 jan 28]. Available from: https://intra.cert.ucr.edu/~carter/pubs/s99appd.pdf

CARTER, W. P. L. Additions and corrections to the SAPRC-99 maximum incremental reactivity (MIR) scale [Internet]. In: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment – Final Report to California Air Resources Board. Summary of upper limit MIR estimates for the SAPRC-99 mechanism dataset, 2000b. [cited 2021 jan 28] Available from: https://intra.cert.ucr.edu/~carter/pubs/s99corr1.pdf

CAUCHICK-MIGUEL, P. A. Metodologia de Pesquisa em Engenharia de Produção e Gestão de Operações. 3rd ed. Rio de Janeiro: Elsevier; 2018.

CHECKLAND, P.; POULTER, J. Soft Systems Methodology. In: REYNOLDS M., HOLWELL S.. editors. Systems Approaches to Managing Change: a Practical Guide. London: Springer-Verlag; 2010. p. 191-242.

CONSTABLE, D. J. C.; CURZONS, A. D.; SANTOS, L. M. F.; GEEN, G. R.; HANNAH, R. E.; HAYLER, J. D. et al. Green chemistry measures for process research and development. Green Chem. 2001;3:7-9.

CONSTABLE, D. J. C.; CURZONS, A. D.; CUNNINGHAM, V. L. Metrics to ‘green’ chemistry - which are the best? Green Chem. 2002;4(6):521-527.

COPELLO, G. J.; VIVOT, R. M.; VARELA, F.; DIAZ, L. E. Synthesis and characterisation of a silicon oxide film solid-phase extraction system for lead traces determination: an all the way green analytical method. Int. J. Environ. Anal. Chem. 2011;91(9):828-843.

CRONIN, M. T. D.; LIVINGSTONE, D. J., editors. Predicting chemical toxicity and fate. New York: CRC Press LLC; 2004.

CUE; B. W.; ZHANG, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev. 2009;2(4):193-211.

DeFOREST, D. K.; BRIX, K. V.; ADAMS, W. J. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 2007;84(2):236-246.

DEWULF, J.; LANGENHOVE, H. V.; MULDER, J.; VAN DEN BERG, M. M. D.; VAN DEN KOOI, H. J.; ARONS, J. S. Illustrations towards quantifying the sustainability of technology. Green Chem. 2000;2:108-114.

DOMÈNECH, X.; AYLLÓN, J. A.; PERAL, J.; RIERADEVALL, J. How green is a chemical reaction? Application of LCA to green chemistry. Environ. Sci. Technol. 2002;36(24):5517-5520.

DUARTE, R. C. C.; RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Avaliação da "microverdura" de sínteses com a estrela verde. Quím. Nova. 2014;37(6):1085-1093.

DUARTE, R. C. C.; RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Reaction Scale and Green Chemistry: Microscale or Macroscale, Which Is Greener? J. Chem. Educ. 2017;94(9):1255-1264.

ECKELMAN, M. J. Life cycle inherent toxicity: a novel LCA-based algorithm for evaluating chemical synthesis pathways. Green Chem. 2016;18(11):3257-3264.

EISSEN, M.; METZGER, J. O. Environmental Performance Metrics for Daily Use in Synthetic Chemistry. Chem. Eur. J. 2002;8(16):3580-3585.

GOEDKOOP, M.; SPRIENSMA, R. The Eco-indicator 99: a damage oriented method for Life Cycle Impact Assessment, Methodology Report. 3rd. ed. [Internet]. Amersfoort, Netherlands: Pre Consultants B. V; 2001 [cited 2021 jan 28]. Available from: https://www.researchgate.net/publication/247848113_The_Eco-Indicator_99_A_Damage_Oriented_Method_for_Life_Cycle_Impact_Assessment/link/551bba220cf251c35b50a401/download

GOEDKOOP, M.; SPRIENSMA, R. The Eco-indicator 99: a damage oriented method for Life Cycle Impact Assessment, Methodology Annex Report. 3rd. ed. [Internet]. Amersfoort, Netherlands: Pre Consultants B. V; 2001 [cited 2021 jan 28]. Available from: https://www.researchgate.net/publication/285641235_The_ecoindicator-99_A_damage_oriented_method_for_life_cycle_impact_assessment_Methodology_annex

HEINZLE, E.; WEIRICH, D.; BROGLI, F.; HOFFMANN, V. H.; KOLLER, G.; VERDUYN, M. A. et al. Ecological and Economic Objective Functions for Screening in Integrated Development of Fine Chemical Processes. 1. Flexible and Expandable Framework Using Indices. Ind. Eng. Chem. Res. 1998;37:3395-3407.

HOLDEN, N. E.; COPLEN, T. B.; BÖHLKE, J. K.; TARBOX, L. V.; BENEFIELD, J.; LAETER, J. R. et al. IUPAC Periodic Table of the elements and isotopes (IPTEI) for the education community – update 2019 (IUPAC Technical Report) [Internet]. 2019 [cited 2021 jan 28]. Available from: https://iupac.org/wp-content/uploads/2015/02/IPTEI_postprint_20190301.pdf

IAEA. International Atomic Energy Agency [Internet]. Vienna: International Atomic Energy Agency; 2008 [cited 2021 jan 28]. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Guide No. TS-G-1.1 (Rev. 1). Available from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1325_web.pdf

IEA. International Energy Agency. Energy data [cited 2021 jan 28]. In: IEA Data and statistics database [Internet]. Available from: https://www.iea.org/data-and-statistics/data-tables?country=WORLD.

ISO. International Organization for Standardization. International Standard 14040. Environmental Management – Life Cycle Assessment – Principles and Framework. Geneva: ISO; 2006a.

ISO. International Organization for Standardization. International Standard 14044. Environmental Management – Life Cycle Assessment – Requirements and Guidelines. Geneva: ISO; 2006b.

KÜMMERER, K.; CLARK, J. Green and Sustainable Chemistry. In HEINRICHS H., MARTENS P., MICHELSEN G., WIEK A., editors. Sustainability Science. [Internet]. Dordrecht: Springer; 2016. p. 43-60. [cited 2021 jan 28]. Available from: http://repository.psa.edu.my/bitstream/123456789/2021/1/2016_Book_SustainabilityScience.pdf

KÜMMERER, K.; DIONYSIOU, D. D.; OLSSON, O.; FATTA-KASSINOS, D. Reducing aquatic micropollutants – Increasing the focus on input prevention and integrated emission management. Sci. Total Environ. 2019;652:836-850.

LEIGHTON, P. Photochemistry of Air Pollution. New York and London: Academic Press; 2012.

LENARDÃO, E. J.; FREITAG, R. A.; DABDOUB, M. J.; BATISTA, A. C. F.; SILVEIRA, C. C. "Green chemistry" - Os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quím. Nova. 2003;26(1):123-129.

LENTINI, J. J. Scientific Protocols for fire investigation. 2nd ed. New York: CRC Press; 2013.

LESEURRE, L.; MEREA, C.; de PAULE, S. D.; PINCHART, A. Eco-footprint: a new tool for the “Made in Chimex” considered approach. Green Chem. 2014;16:1139-1148.

MACHADO, A. A. S. C. Bol. S. P. Q. Métricas da Química Verde – A Produtividade Atómica 2007;(107):47-55.

MACHADO, A. A. S. C. Da génese ao ensino da química verde. Quím. Nova. 2011;34(3):535-543.

MACHADO, A. A. S. C. Dos primeiros aos segundos doze princípios da Química Verde. Quím. Nova. 2012;35(6):1250-1259.

MACHADO, A. A. S. C. Bateria de métricas para avaliação da verdura material de reações de síntese. Quím. Nova. 2014;37(6):1094-1109.

MARTINEZ-GUERRA, E.; GUDE, V. G. Assessment of Sustainability Indicators for Biodiesel Production. Appl. Sci. 2017;7(9):869-882.

MEENACHI, S.; KANDASAMY, S. Investigation of tannery liming waste water using green synthesised iron oxide nano particles. Int.. J. Environ. Anal. Chem. 2019;99(13):1286-1297.

MEKONNEN, M. M.; HOEKSTRA, A. Y. Four billion people facing severe water scarcity. Science Advances. [Internet]. 2016 [cited 2021 jan 28];2(2):e1500323. Available from: https://advances.sciencemag.org/content/2/2/e1500323

MENDES, N. C. Métodos e modelos de caracterização para a avaliação de impacto do ciclo de vida: análise e subsídios para a aplicação no Brasil [dissertation]. São Carlos: Departamento de Engenharia de Produção/USP; 2013.

MICHELSEN, G.; ADOMBENT, M.; MARTENS, P.; VON-HAUFF, M. Sustainable Development – Background and Context. In HEINRICHS H., MARTENS P., MICHELSEN G., WIEK A., editors. Sustainability Science. [Internet]. Dordrecht: Springer; 2016. pp. 5-30. [cited 2021 jan 28]. Available from: http://repository.psa.edu.my/bitstream/123456789/2021/1/2016_Book_SustainabilityScience.pdf

MORITA, T.; MORIKAWA, K. Expert Review for GHS classification of Chemicals on Health Effects. Industrial Health. 2011;49(5):559-565.

NCBI. National Center for Biotechnology Information. PubChem. [cited 2021 jan 28]. In: National Library of Medicine Database [Internet]. Available from: https://pubchem.ncbi.nlm.nih.gov/

OECD. Organisation for Economic Co-operation and Development, 301 OECD Guideline for testing of chemicals – Ready Biodegradability [Internet]. Paris: OECD Environmental Directorate, Environmental Health and Safety Division; 1992 [cited 2021 jan 28]. Available from: https://www.oecd.org/chemicalsafety/risk-assessment/1948209.pdf

OWSIANIAK, M.; LAURENT, A.; BJORN, A.; HAUSCHILD, M. Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. Int. J. Life Cycle Assess. 2014;19:1007-1021.

OXLEY, J. C. The Chemistry of Explosives. In: ZUKAS J. A., WALTERS W. P., editors. Explosive Effects and Applications. New York: Springer; 1998. p 137-172.

PEDROTTI, A.; CHAGAS, R. M.; RAMOS, V. C.; PRATA, A. P. N.; LUCAS, A. A. T.; SANTOS, P. B. Causas e consequências do processo de salinização dos solos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental. 2015;19(2):1308-1324.

PHAN, T. V. T.; GALLARDO, C.; MANE, J. GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chem. 2015;17:2846-2852.

PRADO, A. G. S. Química verde, os desafios da química do novo milênio. Quím. Nova. 2003;26(5):738-744.

PUROHIT, G.; RAJESH, U. C.; RAWAT, D. Hierarchically Porous Sphere-Like Copper Oxide (HS-CuO) Nanocatalyzed Synthesis of Benzofuran Isomers with Anomalous Selectivity and Their Ideal Green Chemistry Metrics. ACS Sustainable Chem. Eng. 2017;5:6466-6477.

RIBEIRO, M. G. T. C.; COSTA, D. A.; MACHADO, A. A. S. C. Uma métrica gráfica para avaliação holística da verdura de reacções laboratoriais – “Estrela Verde”. Quím. Nova. 2010a;33(3):759-764.

RIBEIRO, M. G. T. C.; COSTA, D. A.; MACHADO, A. A. S. C. “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chem. Lett. Rev. 2010b;3(2):149-159.

RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Metal−Acetylacetonate Synthesis Experiments: Which Is Greener? J. Chem. Educ. 2011;88(7):947-953.

RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Novas métricas holísticas para avaliação da verdura de reações de síntese em laboratório. Quím. Nova. 2012;35(9):1879-1883.

RIBEIRO, M. G. T. C.; YUNES, S. F.; MACHADO, A. A. S. C. Assessing the Greenness of Chemical Reactions in the Laboratory Using Updated Holistic Graphic Metrics Based on the Globally Harmonized System of Classification and Labeling of Chemicals. J. Chem. Educ. 2014;91(11):1901-1908.

RIJSBERMAN, F. R. Water scarcity: Fact or fiction? Agricultural Water Management 2006;80(1-3):5-22.

SABOIA, G. Uso do Sistema de Avaliação e Controle das Perdas por Evaporação em Tanques de Armazenamento de Solventes Orgânicos, Sistemas Produtivos e Transporte Rodoviário de Cargas Perigosas no Brasil para Avaliação de Riscos de Impacto Ambiental, incêndio e acidentes. Encarte da Revista Átomo. 2010;7:1-12.

SHANKER, U.; JASSAL, V.; RANI, M.; KAITH, B. S. Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review. Intern. J. Environ. Anal. Chem. 2016;96(9):801-835.

SHELDON, R. Green Chemistry - one year on. Green Chem. 2000;2:G1-G4.

SHELDON, R. A. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005;7:267-278.

SHELDON, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018;6:32-48.

SILVA, F. M.; LACERDA, P. S. B.; JONES JUNIOR, J. Desenvolvimento sustentável e química verde. Quím. Nova. 2005;28(1):103-110.

SILVEIRA, A. D. P. Química Verde: Princípios e Aplicações. [monography]. São João del-Rei: Química/Universidade Federal de São João del-Rei; 2015.

SINGH, M. Determination of the rate of reaction between potassium iodide and potassium peroxodisulphate with the econoburette: a green chemistry and microscale titrations. Intern. J. Environ. Anal. Chem. 2011;91(3):272-279.

SKOUTA, R. Selective chemical reactions in supercritical carbon dioxide, water, and ionic liquids. Green Chem. Lett. Rev. 2009;2(3):121-156.

SOLOMON S.; WUEBBLES, D. Ozone Depletion Potentials, Global Warming Potentials, and Future Chlorine/Bromine Loading [Internet]. In: ENNIS C. A., editor. Scientific Assessment of Ozone Depletion: 1994. Geneva: Report of United Nations Environment Programme, World Meteorological Organization, National Oceanic and Atmosferic Administration, and National Aeronautics and Space Administration; 1995. p. 13.12-13.18. [cited 2021 jan 28]. Available from: https://www.esrl.noaa.gov/csd/assessments/ozone/1994/chapters/chapter13.pdf

SOROURADDIN, S. M.; FARAJZADEH, M. A.; OKHRAVI, T. A green solventless temperature-assisted homogeneous liquid–liquid microextraction method based on 8-hydroxyquinoline simultaneously as complexing agent and extractant for preconcentration of cobalt and nickel from water and fruit juice samples. Intern. J. Environ. Anal. Chem. 2019;99(2):124-138.

SOUZA, J. F.; COSTA, G. P.; LUQUE, R.; ALVES, D.; FAJARDO, A. R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol. 2019;9(1):136-145.

STRANDDORF, H. K.; HOFFMANN, L.; SCHMIDT, A. Impact categories, normalisation and weighting in LCA. Environ. News. [Internet]. 2005 [cited 2021 jan 28];(78):1-90. Available from: https://www2.mst.dk/udgiv/publications/2005/87-7614-574-3/pdf/87-7614-575-1.pdf

TCHOBANOGLOUS, G.; BURTON, F. L.; STENSEL, H. D., reviewers. Wastewater engineering: treatment and reuse – METCALF & EDDY, Inc. 4th ed. New York: McGraw-Hill; 2003.

TUNDO, P.; ANASTAS, P.; BLACK, D. StC. ; BREEN, J.; COLLINS, T.; MEMOLI, S. et al. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem. 2000;72(7):1207-1228.

UNITED NATIONS. Report of the United Nations Conference on the Human Environment No. A/CONF.48/14/Rev.1 [Internet]. 1972 [cited 2021 jan 28]. Available from: https://digitallibrary.un.org/record/523249

UNITED NATIONS. Transforming our world: the 2030 agenda for sustainable development – Report No. A/RES/70/1 [Internet]. 2015 [cited 2021 jan 28]. Available from: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

UNITED NATIONS – Economic Comission for Europe, Globally Harmonized System of Classification and labelling of chemicals (GHS). 8th rev. ed. [Internet]. New York and Geneva: United Nations Publications; 2019 [cited 2021 jan 28]. Available from: https://unece.org/ghs-rev8-2019

VARMA, R. S. Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem. 1999;1(1):43-55.

VARMA, R.; VARMA, D. R. The Bhopal Disaster of 1984. Bulletin of Science, Technology & Society. 2005;25(1):37-45.

VERONES, F.; HANAFIAH, M. M.; PFISTER, S.; HUIJBREGTS, M. A. J.; PELLETIER, G. J.; KOEHLER, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010;44(24):9364-9369.

VOULGARI, A.; GATSELOU, V. A.; KAPPI, F. A.; CHOLEVA, T. G.; TSOGAS, G. Z.; VLESSIDIS, A. G. et al. Solid ink-printed filter paper as a green adsorbent material for the solid-phase extraction of UV filters from water samples. Intern. J. Environ. Anal. Chem. 2017;97(12):1163-1177.

WARDENCKI, W.; CURYLO, J.; NAMIESNIK, J. Green Chemistry - Current and Future Issues. Polish Journal of Environmental Studies. 2005;14(4):389-395.

WHO. World Health Organization. IARC monographs on the identification of carcinogenic hazards to humans, List of Classifications. [cited 2021 jan 28]. In: International Agency for Research on Cancer Database [Internet]. Available from: https://monographs.iarc.fr/list-of-classifications.

WINTERTON, N. Twelve more green chemistry principles. Green Chem. 2001;3(6):G73-G81.

WRI & WBCSD. World Resources Institute and World Business Council for Sustainable Development. Global Warming Potential Values. [cited 2021 jan 28]. In: Greenhouse Gas Protocol Dataset [Internet]. Available from: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf

Publicado

2021-04-08

Versões

Como Citar

Finazzi, G. A., & Santos, V. M. L. (2021). Proposição de uma métrica ambiental holística baseada em indicadores ambientais. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 25, e13. https://doi.org/10.5902/2236117064032