Proposição de uma métrica ambiental holística baseada em indicadores ambientais
DOI:
https://doi.org/10.5902/2236117064032Palavras-chave:
Métrica ambiental holística, Química sustentável, sustentabilidade, Química verde, Química AmbientalResumo
Não há dúvida de que alcançar a sustentabilidade é essencial. O usoracional dos recursos naturais é extremamente importante para o
desenvolvimento humano. Com o passar dos anos, essa preocupação levou
várias instituições a elaborarem legislações e protocolos internacionais,
como o protocolo de Kyoto, para satisfazer as condições de
sustentabilidade. A Agenda 2030 configura como sendo o instrumento mais
recente de medidas propostas para atender a essas condições. Nesse
contexto, a atividade humana relacionada à Química ganha destaque:
garantir todos os aspectos sustentáveis em um procedimento é um grande
desafio. A avaliação da Sustentabilidade em Química é realizada por
cálculos de métricas verdes, cuja utilidade é melhor aproveitada na
comparação de procedimentos do que em uma avaliação de procedimento
único. Devido aos problemas da utilização de métricas, relacionadas a
simplificações que geram pseudo-resultados, necessidade de numerosos
cálculos mal-interpretados e adoção incorreta de métricas, neste artigo é
proposta uma métrica ambiental que atende às necessidades atuais
relacionadas ao consumo de materiais e energia e à avaliação da
sustentabilidade de procedimentos químicos. A métrica foi elaborada com
o objetivo de atender todos os requisitos ambientais de sustentabilidade
química de forma simplificada e confiável, com base em pesquisa
bibliográfica e experiência acadêmica. A elaboração da métrica possui uma
abordagem combinada, em que são estabelecidos valores de referência
para os principais indicadores de sustentabilidade, utilizando Soft System
Methodology (SSM).
Downloads
Referências
AGEE, B. M.; MULLINS, G.; BIERNACKI, J. J.; SWARTLING, D. J. Wolff–Kishner reduction reactions using a solar irradiation heat source and a green solvent system. Green Chem. Lett. Rev. 2014;7(4):383-392.
AKEN, K. V.; STREKOWSKI, L.; PATINY, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. [Internet]. 2006 [cited 2021 jan 28];2(3). Available from: https://doi.org/10.1186/1860-5397-2-3
AZAMBUJA, M. E. Comparativo de métricas de sustentabilidade [dissertation]. Porto Alegre: Departamento de Engenharia Química/UFRS; 2013.
BARE, J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Techn. Environ. Policy 2011;13:687-696.
BASTIAANSSEN, W. G. M.; STEDUTO, P. The water productivity score (WPS) at global and regional level: Methodology and first results from remote sensing measurements of wheat, rice and maize. Sci. Total Environ. 2017;575:595-611.
CALVO-FLORES, F. G. Sustainable Chemistry Metrics. ChemSusChem 2009;2(10):905-919.
CARTER, W. P. L. Estimation of upper limit maximum incremental reactivities [Internet]. In: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment – Final Report to California Air Resources Board. Summary of upper limit MIR estimates for the SAPRC-99 mechanism dataset (Appendix D), 2000a. [cited 2021 jan 28]. Available from: https://intra.cert.ucr.edu/~carter/pubs/s99appd.pdf
CARTER, W. P. L. Additions and corrections to the SAPRC-99 maximum incremental reactivity (MIR) scale [Internet]. In: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment – Final Report to California Air Resources Board. Summary of upper limit MIR estimates for the SAPRC-99 mechanism dataset, 2000b. [cited 2021 jan 28] Available from: https://intra.cert.ucr.edu/~carter/pubs/s99corr1.pdf
CAUCHICK-MIGUEL, P. A. Metodologia de Pesquisa em Engenharia de Produção e Gestão de Operações. 3rd ed. Rio de Janeiro: Elsevier; 2018.
CHECKLAND, P.; POULTER, J. Soft Systems Methodology. In: REYNOLDS M., HOLWELL S.. editors. Systems Approaches to Managing Change: a Practical Guide. London: Springer-Verlag; 2010. p. 191-242.
CONSTABLE, D. J. C.; CURZONS, A. D.; SANTOS, L. M. F.; GEEN, G. R.; HANNAH, R. E.; HAYLER, J. D. et al. Green chemistry measures for process research and development. Green Chem. 2001;3:7-9.
CONSTABLE, D. J. C.; CURZONS, A. D.; CUNNINGHAM, V. L. Metrics to ‘green’ chemistry - which are the best? Green Chem. 2002;4(6):521-527.
COPELLO, G. J.; VIVOT, R. M.; VARELA, F.; DIAZ, L. E. Synthesis and characterisation of a silicon oxide film solid-phase extraction system for lead traces determination: an all the way green analytical method. Int. J. Environ. Anal. Chem. 2011;91(9):828-843.
CRONIN, M. T. D.; LIVINGSTONE, D. J., editors. Predicting chemical toxicity and fate. New York: CRC Press LLC; 2004.
CUE; B. W.; ZHANG, J. Green process chemistry in the pharmaceutical industry. Green Chem. Lett. Rev. 2009;2(4):193-211.
DeFOREST, D. K.; BRIX, K. V.; ADAMS, W. J. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 2007;84(2):236-246.
DEWULF, J.; LANGENHOVE, H. V.; MULDER, J.; VAN DEN BERG, M. M. D.; VAN DEN KOOI, H. J.; ARONS, J. S. Illustrations towards quantifying the sustainability of technology. Green Chem. 2000;2:108-114.
DOMÈNECH, X.; AYLLÓN, J. A.; PERAL, J.; RIERADEVALL, J. How green is a chemical reaction? Application of LCA to green chemistry. Environ. Sci. Technol. 2002;36(24):5517-5520.
DUARTE, R. C. C.; RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Avaliação da "microverdura" de sínteses com a estrela verde. Quím. Nova. 2014;37(6):1085-1093.
DUARTE, R. C. C.; RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Reaction Scale and Green Chemistry: Microscale or Macroscale, Which Is Greener? J. Chem. Educ. 2017;94(9):1255-1264.
ECKELMAN, M. J. Life cycle inherent toxicity: a novel LCA-based algorithm for evaluating chemical synthesis pathways. Green Chem. 2016;18(11):3257-3264.
EISSEN, M.; METZGER, J. O. Environmental Performance Metrics for Daily Use in Synthetic Chemistry. Chem. Eur. J. 2002;8(16):3580-3585.
GOEDKOOP, M.; SPRIENSMA, R. The Eco-indicator 99: a damage oriented method for Life Cycle Impact Assessment, Methodology Report. 3rd. ed. [Internet]. Amersfoort, Netherlands: Pre Consultants B. V; 2001 [cited 2021 jan 28]. Available from: https://www.researchgate.net/publication/247848113_The_Eco-Indicator_99_A_Damage_Oriented_Method_for_Life_Cycle_Impact_Assessment/link/551bba220cf251c35b50a401/download
GOEDKOOP, M.; SPRIENSMA, R. The Eco-indicator 99: a damage oriented method for Life Cycle Impact Assessment, Methodology Annex Report. 3rd. ed. [Internet]. Amersfoort, Netherlands: Pre Consultants B. V; 2001 [cited 2021 jan 28]. Available from: https://www.researchgate.net/publication/285641235_The_ecoindicator-99_A_damage_oriented_method_for_life_cycle_impact_assessment_Methodology_annex
HEINZLE, E.; WEIRICH, D.; BROGLI, F.; HOFFMANN, V. H.; KOLLER, G.; VERDUYN, M. A. et al. Ecological and Economic Objective Functions for Screening in Integrated Development of Fine Chemical Processes. 1. Flexible and Expandable Framework Using Indices. Ind. Eng. Chem. Res. 1998;37:3395-3407.
HOLDEN, N. E.; COPLEN, T. B.; BÖHLKE, J. K.; TARBOX, L. V.; BENEFIELD, J.; LAETER, J. R. et al. IUPAC Periodic Table of the elements and isotopes (IPTEI) for the education community – update 2019 (IUPAC Technical Report) [Internet]. 2019 [cited 2021 jan 28]. Available from: https://iupac.org/wp-content/uploads/2015/02/IPTEI_postprint_20190301.pdf
IAEA. International Atomic Energy Agency [Internet]. Vienna: International Atomic Energy Agency; 2008 [cited 2021 jan 28]. Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Guide No. TS-G-1.1 (Rev. 1). Available from: https://www-pub.iaea.org/MTCD/publications/PDF/Pub1325_web.pdf
IEA. International Energy Agency. Energy data [cited 2021 jan 28]. In: IEA Data and statistics database [Internet]. Available from: https://www.iea.org/data-and-statistics/data-tables?country=WORLD.
ISO. International Organization for Standardization. International Standard 14040. Environmental Management – Life Cycle Assessment – Principles and Framework. Geneva: ISO; 2006a.
ISO. International Organization for Standardization. International Standard 14044. Environmental Management – Life Cycle Assessment – Requirements and Guidelines. Geneva: ISO; 2006b.
KÜMMERER, K.; CLARK, J. Green and Sustainable Chemistry. In HEINRICHS H., MARTENS P., MICHELSEN G., WIEK A., editors. Sustainability Science. [Internet]. Dordrecht: Springer; 2016. p. 43-60. [cited 2021 jan 28]. Available from: http://repository.psa.edu.my/bitstream/123456789/2021/1/2016_Book_SustainabilityScience.pdf
KÜMMERER, K.; DIONYSIOU, D. D.; OLSSON, O.; FATTA-KASSINOS, D. Reducing aquatic micropollutants – Increasing the focus on input prevention and integrated emission management. Sci. Total Environ. 2019;652:836-850.
LEIGHTON, P. Photochemistry of Air Pollution. New York and London: Academic Press; 2012.
LENARDÃO, E. J.; FREITAG, R. A.; DABDOUB, M. J.; BATISTA, A. C. F.; SILVEIRA, C. C. "Green chemistry" - Os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quím. Nova. 2003;26(1):123-129.
LENTINI, J. J. Scientific Protocols for fire investigation. 2nd ed. New York: CRC Press; 2013.
LESEURRE, L.; MEREA, C.; de PAULE, S. D.; PINCHART, A. Eco-footprint: a new tool for the “Made in Chimex” considered approach. Green Chem. 2014;16:1139-1148.
MACHADO, A. A. S. C. Bol. S. P. Q. Métricas da Química Verde – A Produtividade Atómica 2007;(107):47-55.
MACHADO, A. A. S. C. Da génese ao ensino da química verde. Quím. Nova. 2011;34(3):535-543.
MACHADO, A. A. S. C. Dos primeiros aos segundos doze princípios da Química Verde. Quím. Nova. 2012;35(6):1250-1259.
MACHADO, A. A. S. C. Bateria de métricas para avaliação da verdura material de reações de síntese. Quím. Nova. 2014;37(6):1094-1109.
MARTINEZ-GUERRA, E.; GUDE, V. G. Assessment of Sustainability Indicators for Biodiesel Production. Appl. Sci. 2017;7(9):869-882.
MEENACHI, S.; KANDASAMY, S. Investigation of tannery liming waste water using green synthesised iron oxide nano particles. Int.. J. Environ. Anal. Chem. 2019;99(13):1286-1297.
MEKONNEN, M. M.; HOEKSTRA, A. Y. Four billion people facing severe water scarcity. Science Advances. [Internet]. 2016 [cited 2021 jan 28];2(2):e1500323. Available from: https://advances.sciencemag.org/content/2/2/e1500323
MENDES, N. C. Métodos e modelos de caracterização para a avaliação de impacto do ciclo de vida: análise e subsídios para a aplicação no Brasil [dissertation]. São Carlos: Departamento de Engenharia de Produção/USP; 2013.
MICHELSEN, G.; ADOMBENT, M.; MARTENS, P.; VON-HAUFF, M. Sustainable Development – Background and Context. In HEINRICHS H., MARTENS P., MICHELSEN G., WIEK A., editors. Sustainability Science. [Internet]. Dordrecht: Springer; 2016. pp. 5-30. [cited 2021 jan 28]. Available from: http://repository.psa.edu.my/bitstream/123456789/2021/1/2016_Book_SustainabilityScience.pdf
MORITA, T.; MORIKAWA, K. Expert Review for GHS classification of Chemicals on Health Effects. Industrial Health. 2011;49(5):559-565.
NCBI. National Center for Biotechnology Information. PubChem. [cited 2021 jan 28]. In: National Library of Medicine Database [Internet]. Available from: https://pubchem.ncbi.nlm.nih.gov/
OECD. Organisation for Economic Co-operation and Development, 301 OECD Guideline for testing of chemicals – Ready Biodegradability [Internet]. Paris: OECD Environmental Directorate, Environmental Health and Safety Division; 1992 [cited 2021 jan 28]. Available from: https://www.oecd.org/chemicalsafety/risk-assessment/1948209.pdf
OWSIANIAK, M.; LAURENT, A.; BJORN, A.; HAUSCHILD, M. Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. Int. J. Life Cycle Assess. 2014;19:1007-1021.
OXLEY, J. C. The Chemistry of Explosives. In: ZUKAS J. A., WALTERS W. P., editors. Explosive Effects and Applications. New York: Springer; 1998. p 137-172.
PEDROTTI, A.; CHAGAS, R. M.; RAMOS, V. C.; PRATA, A. P. N.; LUCAS, A. A. T.; SANTOS, P. B. Causas e consequências do processo de salinização dos solos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental. 2015;19(2):1308-1324.
PHAN, T. V. T.; GALLARDO, C.; MANE, J. GREEN MOTION: a new and easy to use green chemistry metric from laboratories to industry. Green Chem. 2015;17:2846-2852.
PRADO, A. G. S. Química verde, os desafios da química do novo milênio. Quím. Nova. 2003;26(5):738-744.
PUROHIT, G.; RAJESH, U. C.; RAWAT, D. Hierarchically Porous Sphere-Like Copper Oxide (HS-CuO) Nanocatalyzed Synthesis of Benzofuran Isomers with Anomalous Selectivity and Their Ideal Green Chemistry Metrics. ACS Sustainable Chem. Eng. 2017;5:6466-6477.
RIBEIRO, M. G. T. C.; COSTA, D. A.; MACHADO, A. A. S. C. Uma métrica gráfica para avaliação holística da verdura de reacções laboratoriais – “Estrela Verde”. Quím. Nova. 2010a;33(3):759-764.
RIBEIRO, M. G. T. C.; COSTA, D. A.; MACHADO, A. A. S. C. “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chem. Lett. Rev. 2010b;3(2):149-159.
RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Metal−Acetylacetonate Synthesis Experiments: Which Is Greener? J. Chem. Educ. 2011;88(7):947-953.
RIBEIRO, M. G. T. C.; MACHADO, A. A. S. C. Novas métricas holísticas para avaliação da verdura de reações de síntese em laboratório. Quím. Nova. 2012;35(9):1879-1883.
RIBEIRO, M. G. T. C.; YUNES, S. F.; MACHADO, A. A. S. C. Assessing the Greenness of Chemical Reactions in the Laboratory Using Updated Holistic Graphic Metrics Based on the Globally Harmonized System of Classification and Labeling of Chemicals. J. Chem. Educ. 2014;91(11):1901-1908.
RIJSBERMAN, F. R. Water scarcity: Fact or fiction? Agricultural Water Management 2006;80(1-3):5-22.
SABOIA, G. Uso do Sistema de Avaliação e Controle das Perdas por Evaporação em Tanques de Armazenamento de Solventes Orgânicos, Sistemas Produtivos e Transporte Rodoviário de Cargas Perigosas no Brasil para Avaliação de Riscos de Impacto Ambiental, incêndio e acidentes. Encarte da Revista Átomo. 2010;7:1-12.
SHANKER, U.; JASSAL, V.; RANI, M.; KAITH, B. S. Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review. Intern. J. Environ. Anal. Chem. 2016;96(9):801-835.
SHELDON, R. Green Chemistry - one year on. Green Chem. 2000;2:G1-G4.
SHELDON, R. A. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005;7:267-278.
SHELDON, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chem. Eng. 2018;6:32-48.
SILVA, F. M.; LACERDA, P. S. B.; JONES JUNIOR, J. Desenvolvimento sustentável e química verde. Quím. Nova. 2005;28(1):103-110.
SILVEIRA, A. D. P. Química Verde: Princípios e Aplicações. [monography]. São João del-Rei: Química/Universidade Federal de São João del-Rei; 2015.
SINGH, M. Determination of the rate of reaction between potassium iodide and potassium peroxodisulphate with the econoburette: a green chemistry and microscale titrations. Intern. J. Environ. Anal. Chem. 2011;91(3):272-279.
SKOUTA, R. Selective chemical reactions in supercritical carbon dioxide, water, and ionic liquids. Green Chem. Lett. Rev. 2009;2(3):121-156.
SOLOMON S.; WUEBBLES, D. Ozone Depletion Potentials, Global Warming Potentials, and Future Chlorine/Bromine Loading [Internet]. In: ENNIS C. A., editor. Scientific Assessment of Ozone Depletion: 1994. Geneva: Report of United Nations Environment Programme, World Meteorological Organization, National Oceanic and Atmosferic Administration, and National Aeronautics and Space Administration; 1995. p. 13.12-13.18. [cited 2021 jan 28]. Available from: https://www.esrl.noaa.gov/csd/assessments/ozone/1994/chapters/chapter13.pdf
SOROURADDIN, S. M.; FARAJZADEH, M. A.; OKHRAVI, T. A green solventless temperature-assisted homogeneous liquid–liquid microextraction method based on 8-hydroxyquinoline simultaneously as complexing agent and extractant for preconcentration of cobalt and nickel from water and fruit juice samples. Intern. J. Environ. Anal. Chem. 2019;99(2):124-138.
SOUZA, J. F.; COSTA, G. P.; LUQUE, R.; ALVES, D.; FAJARDO, A. R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol. 2019;9(1):136-145.
STRANDDORF, H. K.; HOFFMANN, L.; SCHMIDT, A. Impact categories, normalisation and weighting in LCA. Environ. News. [Internet]. 2005 [cited 2021 jan 28];(78):1-90. Available from: https://www2.mst.dk/udgiv/publications/2005/87-7614-574-3/pdf/87-7614-575-1.pdf
TCHOBANOGLOUS, G.; BURTON, F. L.; STENSEL, H. D., reviewers. Wastewater engineering: treatment and reuse – METCALF & EDDY, Inc. 4th ed. New York: McGraw-Hill; 2003.
TUNDO, P.; ANASTAS, P.; BLACK, D. StC. ; BREEN, J.; COLLINS, T.; MEMOLI, S. et al. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem. 2000;72(7):1207-1228.
UNITED NATIONS. Report of the United Nations Conference on the Human Environment No. A/CONF.48/14/Rev.1 [Internet]. 1972 [cited 2021 jan 28]. Available from: https://digitallibrary.un.org/record/523249
UNITED NATIONS. Transforming our world: the 2030 agenda for sustainable development – Report No. A/RES/70/1 [Internet]. 2015 [cited 2021 jan 28]. Available from: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
UNITED NATIONS – Economic Comission for Europe, Globally Harmonized System of Classification and labelling of chemicals (GHS). 8th rev. ed. [Internet]. New York and Geneva: United Nations Publications; 2019 [cited 2021 jan 28]. Available from: https://unece.org/ghs-rev8-2019
VARMA, R. S. Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem. 1999;1(1):43-55.
VARMA, R.; VARMA, D. R. The Bhopal Disaster of 1984. Bulletin of Science, Technology & Society. 2005;25(1):37-45.
VERONES, F.; HANAFIAH, M. M.; PFISTER, S.; HUIJBREGTS, M. A. J.; PELLETIER, G. J.; KOEHLER, A. Characterization factors for thermal pollution in freshwater aquatic environments. Environ. Sci. Technol. 2010;44(24):9364-9369.
VOULGARI, A.; GATSELOU, V. A.; KAPPI, F. A.; CHOLEVA, T. G.; TSOGAS, G. Z.; VLESSIDIS, A. G. et al. Solid ink-printed filter paper as a green adsorbent material for the solid-phase extraction of UV filters from water samples. Intern. J. Environ. Anal. Chem. 2017;97(12):1163-1177.
WARDENCKI, W.; CURYLO, J.; NAMIESNIK, J. Green Chemistry - Current and Future Issues. Polish Journal of Environmental Studies. 2005;14(4):389-395.
WHO. World Health Organization. IARC monographs on the identification of carcinogenic hazards to humans, List of Classifications. [cited 2021 jan 28]. In: International Agency for Research on Cancer Database [Internet]. Available from: https://monographs.iarc.fr/list-of-classifications.
WINTERTON, N. Twelve more green chemistry principles. Green Chem. 2001;3(6):G73-G81.
WRI & WBCSD. World Resources Institute and World Business Council for Sustainable Development. Global Warming Potential Values. [cited 2021 jan 28]. In: Greenhouse Gas Protocol Dataset [Internet]. Available from: https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf
Downloads
Publicado
Versões
- 2022-07-25 (2)
- 2021-04-08 (1)