Esta é uma versão desatualizada publicada em 2020-12-04. Leia a versão mais recente.

Caracterização de material recalcitrante de lixiviado de aterro sanitário antigo por métodos espectroscópicos

Autores

DOI:

https://doi.org/10.5902/2236117062664

Palavras-chave:

Chorume, Matéria orgânica estabilizada, Substâncias húmicas, Espectroscopias de UV-Vis e fluorescência

Resumo

O lixiviado de aterro sanitário é um efluente com características complexas e que ainda apresenta desafios no seu tratamento. A partir da estabilização da matéria orgânica, que ocorre durante vários anos em um aterro, a biodegradabilidade do lixiviado diminui, dificultando o emprego do tratamento biológico. A partir disso, o objetivo deste trabalho foi identificar as características do lixiviado de um aterro sanitário antigo, localizado em Curitiba – BR, utilizando técnicas convencionais e espectroscópicas. Foram realizadas duas coletas de lixiviado no Aterro Municipal de Curitiba, na entrada do sistema de tratamento do aterro, denominadas P11 e P12, e foram realizadas análises de pH, DQO, DBO, COD, cor, série de sólidos e análises de espectroscopia de UV-Vis e de fluorescência. A partir das análises realizadas, observou-se que o lixiviado sofreu interferência das taxas de precipitação e pode inferir-se que o aterro estudado está em processo de envelhecimento, com o lixiviado apresentando características recalcitrantes. A matéria orgânica apresentou forte característica húmica, sendo constituída principalmente por substâncias aromáticas como ácidos húmicos e fúlvicos, podendo ser indicada a utilização de tratamento físico-químico para o lixiviado estudado. Além disso, as análises espectroscópicas trouxeram informações adicionais, de maneira mais rápida e com consumo mais baixo de reagentes do que as técnicas convencionais, e são ferramentas promissoras para auxiliar na identificação da etapa de decomposição em que o aterro se encontra, subsidiar o planejamento do tratamento adequado e o monitoramento do lixiviado gerado.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Victória Regina Celso Monteiro, Paraná Federal University, Curitiba, PR

Doutoranda no Programa de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental da UFPR

Carlos Eduardo Rodrigues Barquilha

Graduado em Engenharia Ambiental pela Universidade do Oeste Paulista (2012), mestre em Engenharia Química pela Universidade Estadual de Maringá (2015) e doutor em Engenharia Química pela Universidade Estadual de Maringá (2019)

Maria Cristina Borba Braga

Graduada em Engenharia Química pela Universidade Federal do Paraná; mestra em Ciências (Bioquímica) pela Universidade Federal do Paraná e doutora em Environmental Technology pelo Imperial College of Science, Technology and Medicine da Universidade de Londres

Referências

AGUASPARANÁ [Internet]. Curitiba: Governo do Estado do Paraná. Secretaria do Desenvolvimento Sustentável e do Turismo. Sistema de Informações Hidrológicas, Pluviometria. 2020. Available from: http://www.aguasparana.pr.gov.br/pagina-264.html

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. NBR 8419 - Apresentação de projetos de aterros sanitários de resíduos sólidos urbanos. ABNT, 1992. Rio de Janeiro - RJ.

APHA. Standard Methods for the Examination of Water and Wastewater, 1999. Washington: APHA - American Public Health Association, 21o Edição.

BAETTKER, E. C.; KOZAK, C.; KNAPIK, H. G.; AISSE, M. M. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere, v. 251, p. 126414, 2020. Elsevier Ltd.

BAKER, A.; CURRY, M. Fluorescence of leachates from three contrasting landfills. Water Res., v. 38, n. 10, p. 2605–2613, 2004.

BRAGA, M. C. B.; AISSE, M. M.; STEINER, P. A.; DIAS, N. C; BARÉS, M. E.; TANAKA, G. T.; et al. Tratamento de lixiviados de aterro sanitário com foco na remoção de nitrogênio amoniacal, matéria orgânica biodegradável e compostos recalcitrantes: caracterização de lixiviados. São Leopoldo-RS, 2012. Partial report.

CARSTEA, E. M. Fluorescence Spectroscopy as a Potential Tool for In-Situ Monitoring of Dissolved Organic Matter in Surface Water Systems. In: P. N. Balkis (Org.); Water Pollut. p.47–68, 2012. Intech.

CEMADEN [Internet]. São José dos Campos-SP: Centro Nacional de Monitoramento e Alertas de Desastres Naturais. Ministério da Ciência, Tecnologia, Inovações e Comunicações. Mapa interativo. 2020. Available from: http://www.cemaden.gov.br/mapainterativo/

CHRISTENSEN, T. H.; KJELDSEN, P.; HANS-JØRGEN, A.; ALBRECHTSEN, A.; HERON, G.; NIELSEN, P. H.; et al. Attenuation of Landfill Leachate Pollutants in Aquifers. Crit. Rev. Environ. Sci. Technol., v. 24, n. 2, p. 119–202, 1994.

CLARET, F.; SCHÄFER, T.; BAUER, A.; BUCKAU, G. Generation of humic and fulvic acid from Callovo-Oxfordian clay under high alkaline conditions. Sci Total Environ., v. 317, n. 1–3, p. 189–200, 2003.

COBLE, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., v. 51, p. 325–346, 1996.

DIAS, N. C. Adsorção De Nitrogênio Amoniacal De Lixiviado De Aterro Sanitário Em Coluna De Leito Fixo Com Vermiculita Expandida [dissertationn]. Curitiba: Departamento de Hidráulica e Saneamento/UFPR; 2013. 79 p.

EL-FADEL, M.; E.BOU-ZEID; W.CHAHINE; B.ALAYLI. Temporal variation of lecheate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag., v. 22, n. 1, p. 269–282, 2002.

FARQUHAR, G. J. Leachate: production and characterization. Can. J. Civ. Eng., v. 16, n. 3, p. 317–325, 1989.

FERREIRA, P. A. S. Remoção de Nitrogênio Amoniacal de Lixiviado de Aterro Sanitário por Processos de Adsorção [thesis]. Curitiba: Departamento de Hidráulica e Saneamento/UFPR; 2014. 145 p.

GU, Z.; CHEN, W.; LI, Q.; WANG, Y.; WU, C.; ZHANG, A. Degradation of recalcitrant organics in landfill concentrated leachate by a microwave-activated peroxydisulfate process. RSC Adv., v. 8, n. 57, p. 32461–32469, 2018. Royal Society of Chemistry.

HUDSON, N.; BAKER, A.; REYNOLDS, D. Fluorescence Analysis of Dissolved Organic Matter in Natural, Waste and Polluted Waters - A Review. River Res. Appl., v. 23, p. 631–649, 2007.

HUGUET, A.; VACHER, L.; RELEXANS, S.; SAUBUSSE, S.; FROIDEFOND, J. M.; PARLANTI, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem., v. 40, n. 6, p. 706–719, 2009. Elsevier Ltd.

HUO, S.; XI, B.; YU, H.; LIU, H. Dissolved organic matter in leachate from different treatment processes. Water Environ. J., v. 23, n. 1, p. 15–22, 2009.

KANG, K.; SHIN, H. S.; PARK, H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Res., v. 36, p. 4023–4032, 2002.

KJELDSEN, P.; BARLAZ, M. A.; ROOKER, A. P.; BAUN, A.; LEDIN, A.; CHRISTENSEN, T. H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol., v. 32, n. 4, p. 297–336, 2002.

KOZAK, C.; LEITHOLD, J.; DE AZEVEDO, J. C. R.; FERNANDES, C. V. S. FEEMC 2.0. Unregistred Program Computer, 2017.

LABANOWSKI, J.; PALLIER, V.; FEUILLADE-CATHALIFAUD, G. Study of organic matter during coagulation and electrocoagulation processes: Application to a stabilized landfill leachate. J. Hazard. Mater., v. 179, n. 1–3, p. 166–172, 2010. Elsevier B.V.

LANGE, L. C.; AMARAL, M. C. S. DO. Geração e Características do Lixiviado. In: Gomes, L. P, coord. Resíduos Sólidos: Estudos de Caracterização e Tratabilidade de Lixiviados de Aterros Sanitários para as Condições Brasileiras. p.360, 2009. Rio de Janeiro - RJ: Editora ABES - Prosab 5.

LEITHOLD, J. Variabilidade Espacial E Temporal Da Matéria Orgânica No Ecossistema Aquático Nas Bacias Hidrográficas Do Alto E Médio Iguaçu. [dissertationn]. Curitiba: Departamento de Hidráulica e Saneamento/UFPR; 2017. 179 p.

LI, P.; HUR, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review, Crit. Rev. Environ. Sci. Technol. 47:131–154, 2017.

LIMA, L. S. M. S.; ALMEIDA, R. DE; QUINTAES, B. R.; BILA, D. M.; CAMPOS, J. C. Evaluation of humic substances removal from leachates originating from solid waste landfills in Rio de Janeiro State, Brazil. J. Environ. Sci. Heal., Part A, v. 52, n. 9, p. 828–836, 2017. Taylor & Francis.

DE MORAIS, J. L.; ZAMORA, P. P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J. Hazard. Mater., v. 123, n. 1–3, p. 181–186, 2005.

OHNO, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol., v. 36, n. 4, p. 742–746, 2002.

OLOIBIRI, V.; UFOMBA, I.; CHYS, M.; AUDENAERT, W.T.M.; DEMEESTERE, K.; VAN HULLE, S.W.H. A comparative study on the efficiency of ozonation and coagulation – flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Manag., v. 43, p. 335–342, 2015. Elsevier Ltd.

PACHECO, J. R.; ZAMORA, P. G. P. Integração de Processos Físico-Químicos e Oxidativos Avançados para Remediação de Percolado de Aterro Sanitário (Chorume). Eng. Sanit e Ambient., v. 9, p. 306–311, 2004.

PEDRO-CEDILLO, L. S.; MÉNDEZ-NOVELO, R. I.; ROJAS-VALENCIA, M. N.; BARCELÓ-QUINTAL, M.; CASTILLO-BORGES, E.R.; SAURI-RIANCHO, M.R.; et al. Evaluation of Adsorption and Fenton-Adsorption Processes for Landfill Leachate Treatment. Rev. Mex. Ing. Química, v. 14, n. 3, p. 23–43, 2015.

PEIXOTO, A. L. DE C.; SALAZAR, R. F. DOS S.; BARBOZA, J. C. DE S.; FILHO, H. J. I. Characterization of controlled landfill lecheate from the city of Guaratinguetá - SP, Brazil. Rev. Ambient. e Água, v. 13, n. 2, 2018.

PEURAVUORI, J.; PIHLAJA, K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta, v. 337, n. 2, p. 133–149, 1997.

REN, X.; LIU, D.; CHEN, W.; JIANG, G.; WU, Z.; SONG, K. Investigation of the characteristics of concentrated leachate from six municipal solid waste incineration power plants in China. RSC Adv., v. 8, n. 24, p. 13159–13166, 2018. Royal Society of Chemistry.

ROCHA, M. C. V. DA. Digestão Anaeróbia De Lixiviado De Aterro Sanitário: Avaliação Do Bioaumento Da Microbiota Autoimobilizada [dissertationn]. Curitiba: Departamento de Hidráulica e Saneamento/UFPR; 2011. 123 p.

RODRIGUES, F. S. F.; BILA, D. M.; CAMPOS, J. C.; SANT’ANNA JR., G. L.; DEZOTTI, M. Sequential treatment of an old-landfill leachate. Int. J. Environ. Waste Manag., v. 4, n. 3/4, p. 445–456, 2009.

ROSTAN, J. C.; CELLOT, B. On the use of UV spectrophotometry to assess dissolved organic carbon origin variations in the Upper Rhône River. Aquat. Sci., v. 57, n. 1, p. 70–80, 1995.

SHENG, G. P.; ZHANG, M. L.; YU, H. Q. A rapid quantitative method for humic substances determination in natural waters. Anal. Chim. Acta, v. 592, n. 2, p. 162–167, 2007.

SKOOG; WEST; HOLLER; CROUCH. Introdução aos métodos espectroquímicos. In: E. Thomson (Org.); Fundamentos de Química Analítica. 8a Edição ed., p.670–703, 2005.

VON SPERLING, M. Introdução á Qualidade das Águas e ao Tratamento de Esgotos. 3a ed. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, 2005.

TONG, H.; YIN, K.; GE, L.; GIANNIS, A.; CHUAN, V.W.L.;WANG, J. Y. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions. J. Hazar. Mater., v. 287, p. 342–348, 2015. Elsevier B.V.

WEISHAAR, J. L.; AIKEN, G. R.; BERGAMASCHI, B. A.; FRAM, M. S.; FUJII, R.; MOPPER, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., v. 37, n. 20, p. 4702–4708, 2003.

WESTERHOFF, P.; ANNING, D. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization. J. Hydrol., v. 236, n. 3–4, p. 202–222, 2000.

XIAOLI, C.; SHIMAOKA, T.; QIANG, G.; YOUCAI, Z. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Manag., v. 28, n. 5, p. 896–903, 2008.

XIAOLI, C.; YONGXIA, H.; GUIXIANG, L.; XIN, Z.; YOUCAI, Z. Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment. Chemosphere, v. 91, n. 7, p. 1058–1063, 2013. Elsevier Ltd.

XIE, Z.; GUAN, W. Research on Fluorescence Spectroscopy Characteristics of Dissolved Organic Matter of Landfill Leachate in the Rear Part of Three Gorges Reservoir. J. Spectrosc., v. 2015, 2015.

YUNUS, A.; SMALLMAN, D. J.; STRINGFELLOW, A.; BEAVEN, R.; POWRIE, W. Leachate dissolved organic matter characterization using spectroscopic methods. J. Water Reuse Desalin., v. 1, n. 2, p. 78, 2011.

ZOUBOULIS, A. I.; CHAI, X. L.; KATSOYIANNIS, I. A. The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. J. Environ. Manage., v. 70, n. 1, p. 35–41, 2004.

Publicado

2020-12-04

Versões

Como Citar

Monteiro, V. R. C., Barquilha, C. E. R., & Braga, M. C. B. (2020). Caracterização de material recalcitrante de lixiviado de aterro sanitário antigo por métodos espectroscópicos. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e9. https://doi.org/10.5902/2236117062664

Artigos mais lidos pelo mesmo(s) autor(es)