Characterization of residual biomass from the harvest of Eucalyptus saligna for thermal conversion processes

Auteurs-es

DOI :

https://doi.org/10.5902/2236117062679

Mots-clés :

Eucalyptus harvest residue, Physical-chemical characterization, Thermal conversion

Résumé

Considering the increasing need for renewable products, the present work aims to evaluate the physical-chemical properties of the eucalyptus harvest residues and its constituent fractions individually (barks, leaves, and branches), through proximate, ultimate, energetic and thermal analyzes. The biomass studied was Eucalyptus saligna species, cultivated mainly for the production of pulp and paper. The proximate analysis of the residue resulted in the moisture content of 10.1%, ash content of 3.9%, volatile materials about 81.1%, and fixed carbon of 15.0%, showing similar values to the constituent fractions. The ultimate analysis of the residue resulted in 46.5% of carbon content, 5.8% of hydrogen, and 43.2% of oxygen. The high heating value (HHV) for the residue is 17.93 MJ/kg, comparable to other biomasses of importance, including eucalyptus wood, the noblest part of the forest cultivation. The thermogravimetric (TGA) and differential thermal analysis (DTA) were carried out and the resulting thermograms show three main ranges of biomass degradation. The first range, from 30 to 150 °C, corresponds to the drying of the material; in the range from 200 to 325 °C hemicelluloses degrade, with partial degradation of lignin and cellulose, and in the range from 325 to 380 °C, the majority of cellulose degradation takes place. The physical-chemical data demonstrate that the eucalyptus residue is an excellent source of biomass for thermal conversion processes. Obtaining products with higher added value from this residue contributes to the implementation of new technological practices that link economic development to environmental responsibility.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Joyce Helena da Silveira, State University of Rio Grande do Sul, Porto Alegre, RS

Graduanda em Engenharia de Bioprocessos e Tecnologia

Ricardo Henrique Thomé Dorneles, State University of Rio Grande do Sul, Porto Alegre, RS

Engenharia de Bioprocessos e Biotecnologia pela Universidade Estadual do Rio Grande do Sul

Victor Hugo Andreis Sebben, State University of Rio Grande do Sul, Porto Alegre, RS

Graduando em Engenharia de Energia pela Universidade Estadual do Rio Grande do Sul

Fabiano Perin Gasparin, Federal University of Rio Grande do Sul, Porto Alegre, RS

Doutor em Engenharia Mecânica

Lúcia Allebrandt da Silva Ries, State University of Rio Grande do Sul, Porto Alegre, RS

Doutora em Ciências dos Materiais

Références

ALMEIDA, G.; BRITO, J. O.; PERRÉ, P. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: The potential of mass loss as a synthetic indicator. Bioresource Technology, 2010. v. 101, n. 24, p. 9778–9784. Disponível em: <http://dx.doi.org/10.1016/j.biortech.2010.07.026>.

BHARATH, G. et al. Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass and Bioenergy, 2020. v. 135, n. January, p. 105523. Disponível em: <https://doi.org/10.1016/j.biombioe.2020.105523>.

BRIDGWATER, T. Biomass for energy. Journal of the Science of Food and Agriculture, set. 2006. v. 86, n. 12, p. 1755–1768. Disponível em: <http://doi.wiley.com/10.1002/jsfa.2605>.

CARDONA, S. et al. Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments, 2019. v. 31, n. November 2018, p. 17–24. Disponível em: <https://doi.org/10.1016/j.seta.2018.11.002>.

CHANDRASEKARAN, A.; RAMACHANDRAN, S.; SUBBIAH, S. Modeling, experimental validation and optimization of Prosopis juliflora fuelwood pyrolysis in fixed-bed tubular reactor. Bioresource Technology, 2018. v. 264, n. April 2018, p. 66–77. Disponível em: <https://doi.org/10.1016/j.biortech.2018.05.013>.

CMPC. Plano de Manejo - Resumo Público CMPC celulose. 2019, 2019. Disponível em: <https://www.cmpcbrasil.com.br/uploads/pdfs/1540901145-1540899032-plano-de-manejo-web-3.pdf>.

CORTEZ (ORG), L. A. B.; LORA (ORG), E. E. S.; GÓMEZ (ORG), E. O. Biomassa para Energia. Campinas - SP: Editora UNICAMP, 2008.

DONG, C. Q. et al. Characteristics and mechanism study of analytical fast pyrolysis of poplar wood. Energy Conversion and Management, 2012. v. 57, p. 49–59. Disponível em: <http://dx.doi.org/10.1016/j.enconman.2011.12.012>.

FAKAYODE, O. A. et al. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – A review. Bioresource Technology, 2020. v. 297, n. November 2019, p. 122408. Disponível em: <https://doi.org/10.1016/j.biortech.2019.122408>.

FERMANELLI, C. S. et al. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study. Waste Management, 2020. v. 102, p. 362–370. Disponível em: <https://doi.org/10.1016/j.wasman.2019.10.057>.

FERREIRA, R. A. Dos R. et al. Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass and Bioenergy, mar. 2020. v. 134, n. December 2019, p. 105456. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0961953419304052>.

FOELKEL, C. Casca da árvore do eucalipto : Aspectos morfológicos , fisiológicos , florestais , ecológicos e industriais , visando a produção de celulose e papel. Eucalyptus Online Book e Newsletter, 2010. p. 109. Disponível em: <http://www.eucalyptus.com.br/>.

GATTO, A. et al. Ciclagem e balanço de nutrientes no sistema solo-planta em um plantio de eucalyptus sp., no Distrito Federal, Brazil. Viçosa - MG: Revista Brasileira de Ciencia do Solo, mar. 2014. v. 38, n. 3, p. 879–887.

IBA. Indústria Brasileira de Árvores - Relatório 2017. São Paulo-SP: [s.n.], 2017. Disponível em: <https://www.iba.org/datafiles/publicacoes/pdf/iba-relatorioanual2017.pdf>.

IBGE. Instituto Brasileiro de Geografia e Estatística - Produção da extração vegetal e da silvicultura 2018. Produção da extração vegetal e da silvicultura, 2019. v. 33, p. 1–8. Disponível em: <https://biblioteca.ibge.gov.br/visualizacao/periodicos/74/pevs_2018_v33_informativo.pdf>

IGNACIO, L. H. Da S.; SANTOS, P. E. De A.; DUARTE, C. A. R. An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil. Renewable and Sustainable Energy Reviews, 2019. v. 103, n. December 2017, p. 361–369. Disponível em: <https://doi.org/10.1016/j.rser.2018.12.053>.

LANGUER, M. P. et al. Insights into pyrolysis characteristics of Brazilian high-ash sewage sludges using thermogravimetric analysis and bench-scale experiments with GC-MS to evaluate their bioenergy potential. Biomass and Bioenergy, jul. 2020. v. 138, n. June, p. 105614. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0961953420301483>.

MARTINI, S.; AFROZE, S.; AHMAD RONI, K. Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater. Alexandria Engineering Journal, 2020. Disponível em: <https://doi.org/10.1016/j.aej.2020.04.010>.

MCKENDRY, P. Energy production from biomass (part 2): conversion technologies. Bioresource Technology, maio. 2002. v. 83, n. 1, p. 47–54. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0960852401001195>.

MENDOZA MARTINEZ, C. L. et al. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass and Bioenergy, 2019. v. 120, n. April 2018, p. 68–76. Disponível em: <https://doi.org/10.1016/j.biombioe.2018.11.003>.

NÚÑEZ-REGUEIRA, L. Energy evaluation of forest residues originated from shrub species in Galicia. Bioresource Technology, jan. 2004. v. 91, n. 2, p. 215–221. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S096085240300169X>.

PARIKH, J.; CHANNIWALA, S. A.; GHOSAL, G. K. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, ago. 2007. v. 86, n. 12–13, p. 1710–1719. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0016236107000294>.

PARIKH, J.; CHANNIWALA, S.; GHOSAL, G. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, mar. 2005. v. 84, n. 5, p. 487–494. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0016236104003072>.

PEREIRA, B. L. C. et al. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources, 23 jul. 2013. v. 8, n. 3, p. 4574–4592. Disponível em: <http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/3908>.

QUAN, C.; GAO, N.; SONG, Q. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis, 2016. v. 121, p. 84–92. Disponível em: <http://dx.doi.org/10.1016/j.jaap.2016.07.005>.

RANDRIAMANANTENA, T. et al. Thermal behaviour of three woods of Madagascar by thermogravimetric analysis in inert atmosphere. Proceedings of the 4th High-Energy Physics International Conference, HEP-MAD 2009, 2009. n. July.

RESQUIN, F. et al. Evaluation of the nutrient content in biomass of Eucalyptus species from short rotation plantations in Uruguay. Biomass and Bioenergy, 2020. v. 134, n. December 2019, p. 105502. Disponível em: <https://doi.org/10.1016/j.biombioe.2020.105502>.

ROCHA, J. H. T. et al. Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations. Forest Ecology and Management, nov. 2016. v. 379, p. 1–10. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S037811271630398X>.

SANTOS, R. C. DOS et al. Análise termogravimétrica em clones de eucalipto como subsídio para a produção de carvão vegetal. Lavras-MG: Cerne, 2012. v. 18, n. 1, p. 143–151. Disponível em: <https://www.redalyc.org/articulo.oa?id=74423494017>.

SETTER, C. et al. Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions. Fuel, fev. 2020. v. 261, n. September 2019, p. 116420. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0016236119317740>.

SHEN, D. K.; GU, S.; BRIDGWATER, A. V. The thermal performance of the polysaccharides extracted from hardwood: Cellulose and hemicellulose. Carbohydrate Polymers, ago. 2010. v. 82, n. 1, p. 39–45. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0144861710002833>.

SHER, F. et al. Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 2020. v. 203, n. November 2019, p. 112266. Disponível em: <https://doi.org/10.1016/j.enconman.2019.112266>.

SILVA, C. M. S. DA et al. Structural and compositional changes in eucalyptus wood chips subjected to dry torrefaction. Industrial Crops and Products, 2017. v. 109, n. May, p. 598–602. Disponível em: <https://doi.org/10.1016/j.indcrop.2017.09.010>.

SILVA, F. De C. E. Potenciais e desafios da pirólise rápida aplicada aos resíduos florestais do eucalipto. [S.l.]: [s.n.], 2016. Disponível em: <http://www.bibliotecadigital.ufrgs.br/da.php?nrb=001009376&loc=2017&l=b6178a10974b4843>.

SILVA, F. T. M.; ATAÍDE, C. H. Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization. Energy, 2019. v. 172, p. 509–516. Disponível em: <https://doi.org/10.1016/j.energy.2019.01.159>.

UN. Transforming our world: the 2030 Agenda for Sustainable Development. [S.l.]: [s.n.], 2015. Disponível em: <https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E>.

VIEIRA, F. R. et al. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, jan. 2020. v. 132, n. November 2019, p. 105412. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S0961953419303617>.

WU, X. F. et al. Catalytic hydrothermal liquefaction of eucalyptus to prepare bio-oils and product properties. Energy Conversion and Management, 2019. v. 199, n. August, p. 111955. Disponível em: <https://doi.org/10.1016/j.enconman.2019.111955>.

YANG, H. et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, ago. 2007. v. 86, n. 12–13, p. 1781–1788. Disponível em: <https://linkinghub.elsevier.com/retrieve/pii/S001623610600490X>.

ZHANG, L.; XU, C. (Charles); CHAMPAGNE, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 2010. v. 51, n. 5, p. 969–982. Disponível em: <http://dx.doi.org/10.1016/j.enconman.2009.11.038>.

ZHANG, Z. et al. Pyrolysis characteristics, kinetics and evolved volatiles determination of rice-husk-based distiller’s grains. Biomass and Bioenergy, 2020. v. 135, n. February, p. 105525. Disponível em: <https://doi.org/10.1016/j.biombioe.2020.105525>.

Publié-e

2020-12-04 — Mis(e) à jour 2022-07-28

Versions

Comment citer

Silveira, J. H. da, Dorneles, R. H. T., Sebben, V. H. A., Gasparin, F. P., & Ries, L. A. da S. (2022). Characterization of residual biomass from the harvest of Eucalyptus saligna for thermal conversion processes. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e13. https://doi.org/10.5902/2236117062679 (Original work published 4 décembre 2020)