Production of biochars derived from sewage sludge and orange peels
DOI:
https://doi.org/10.5902/2236117062692Schlagworte:
Reuse of waste, Circular economy, PyrolysisAbstract
The increasing accumulation of waste in the environment has several environmental and public health impacts. In contrast, the circular economy emerges as a model that seeks the return of waste to the production chain. An alternative for the reinsertion of these materials to the production cycle is their conversion into biochar by the pyrolysis process. Thus, this study aims to produce, perform the initial characterization and compare biochars obtained from two different matrices: sludge from sewage treatment plants and orange peels. The sludge samples were pyrolyzed at 450 °C (BL450) and 650 °C (BL650). While the orange peel biochars were produced at 400 °C (BC400) and 600 °C (BC600). Yields were determined and analyzes of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were also performed. The yields obtained were 32% (BC400), 28% (BC600), 46% (BL450) and 38% (BL650). The presence of pores was identified in the BC400 and BC600 SEM micrographs. However, for the BL450 and the BL650 samples, heterogeneous and asymmetric surfaces were observed. From the EDX analysis the absence of trace metals and the presence of compounds potentially beneficial to the soil and plants were found, which can act as binders in the adsorption process. In addition, due to their mostly carbonaceous composition, biochars are resistant to decomposition and can contribute to the carbon sequestration process. The yields obtained indicate a reduction of the mass of waste, which can be advantageous for handling and transportation. As a result, the production of biochar from non-conventional materials, such as sewage sludge and orange peels, can be seen as an attractive alternative for waste management, since it assists the reintroduction of these materials in the production chain, according to the concept of circular economy.
Downloads
Literaturhinweise
AGRAFIOTI E.; BOURAS G.; KALDERIS D.; DIAMADOPOULOS E. Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis. 2013;101:72-8.
AHMAD M.; RAJAPAKSHA A.U.; LIM J.E.; ZHANG M.; BOLAN N.; MOHAN D. et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19-33.
ANDREOLI C.V.; SPERLING M.V.; FERNANDES F. Lodo de esgotos: tratamento e disposição final. 2nd ed. Belo Horizonte: Universidade Federal de Minas Gerais; 2014.
APHA. Standard Methods for the Examination of Water and Wastewater. 21th ed. Washington: APHA - American Public Health Association; 1999.
BATISTA E.M.; SHULTZ J.; MATOS T.T.; FORNARI M.R.; FERREIRA T.M.; SZPOGANICZ B.; et al. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci. Rep. 2018;8(1):1-9.
BRASIL, Ministério do Desenvolvimento Regional. Secretaria Nacional de Saneamento – SNS. Sistema Nacional de Informações sobre Saneamento: 24ª Diagnóstico dos Serviços de Água e Esgotos - 2018. Brasília: SNS/MDR; 2019.
CHEN B.; CHEN Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere. 2009;76(1):127-33.
CHEN H.; ZHAI Y.; XU B.; XIANG B.; ZHU L.; QIU L.; et al. Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge. Environ. Technol. 2015;36(4):470-8.
CHEMERYS V.; BALTRĖNAITĖ E. Pine-derived biochar as option for adsorption of Cu, Zn, Cr, Pb, Ni and decreasing of BOD5 in landfill leachate. Future of Lithuania. 2017;9(4):406-12.
COSTA A.M.; ALFAIA R.G.; CAMPOS J.C. Landfill leachate treatment in Brazil–An overview. J. Environ. Manage. 2019;232:110-6.
COSTA NETO D.S.; SOUZA A.O.; SANTOS T.S.M. Adsorvente Preparado a Partir de Lodo De Esgoto e sua Aplicação para a Remoção de Tartrazina. In: Anais do 12o Congresso Brasileiro sobre Adsorção; 2018 Apr 23-25; Gramado, Brasil. p. 1–6
CYPRIANO D.Z.; DA SILVA L.L.; TASIC L. High value-added products from the orange juice industry waste. Waste Manage. 2018;79:71-8.
DING Z.; WAN Y.; HU X.; WANG S.; ZIMMERMAN A.R.; GAO B. Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: importance of physicochemical properties. J. Ind. Eng. Chem. 2016;37:261-7.
FEITOSA A.A.; RITTER E.; TEIXEIRA W.G.; DE REZENDE F.A.; KERN J. Sorption of Ammonium in Banana Peel and Orange Bagasse Biochars. In: Zhan L, Chen Y, Bouazza A, editors. Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1. 2018 out 28 – nov 01; Hangzhou, China: Environmental Science and Engineering. Springer, Singapore; 2019.
HOMRICH A.S.; GALVAO G.; ABADIA L.G.; CARVALHO M.M. The circular economy umbrella: Trends and gaps on integrating pathways. J. Cleaner Prod. 2018;175:525-43.
HU X.; ZHANG X.; NGO H.H.; GUO W.; WEN H.; LI C. et al. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 2020;707:135544.
IBGE - Instituto Brasileiro de Geografia e Estatística. Produção Agrícola Municipal [Internet]. Rio de Janeiro: IBGE; 2017 [cited 2020 May 10]. Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/66/pam_2017_v44_br_informativo.pdf
KJELDSEN P.; BARLAZ M.A.; ROOKER A.P.; BAUN A.; LEDIN A.; CHRISTENSEN T.H. Present and long-term composition of MSW landfill leachate: a review. Crit. Rev. Env. Sci. Tec. 2002;32(4):297-336.
LAM S.S.; LIEW R.K.; CHENG C.K.; RASIT N.; OOI C.K.; MA N.L. et al. Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. J. Environ. Manage. 2018;213:400-8.
MACARTHUR E. Towards the circular economy, economic and business rationale for an accelerated transition. Cowes: Ellen MacArthur Foundation; 2013. 96 p.
MARTIN M.J.; SERRA E.; ROS A.; BALAGUER M.D.; RIGOLA M. Carbonaceous adsorbents from sewage sludge and their application in a combined activated sludge-powdered activated carbon (AS-PAC) treatment. Carbon. 2004;42(7):1389-94.
MARTÍNEZ E.J.; ROSAS J.G.; SOTRES A.; MORAN A.; CARA J.; SÁNCHEZ M.E.; et al. Codigestion of sludge and citrus peel wastes: Evaluating the effect of biochar addition on microbial communities. Biochem. Eng. J. 2018;137:314-25.
MARTINS T.H.; SOUZA T.S.; FORESTI E. Ammonium removal from landfill leachate by Clinoptilolite adsorption followed by bioregeneration. J. Environ. Chem. Eng. 2017;5(1):63-8.
MAROUŠEK J.; STRUNECKÝ O.; STEHEL V. Biochar farming: defining economically perspective applications. Clean Technol. Environ. Policy. 2019:1-7.
MIRABELLA N.; CASTELLANI V.; SALA S. Current options for the valorization of food manufacturing waste: a review. J. Cleaner Prod. 2014;65:28-41.
MIRELES S.; PARSONS J.; TRAD T.; CHENG C.L.; KANG J. Lead removal from aqueous solutions using biochars derived from corn stover, orange peel, and pistachio shell. International J. Environ. Sci. Technol. 2019;16(10):5817-26.
MOCELIN C. Pirólise de lodo de esgoto sanitário: produção de adsorvente e óleos combustíveis [dissertation]. Curitiba: Programa de Pós-Graduação em Engenharia Mecânica e de Materiais/UTFPR; 2007. 112 p.
PRADO L.L. Utilização de lodo de esgoto pirolisado como adsorvente de amônio de lixiviado de aterro sanitário [dissertation]. Curitiba: Setor de Ciências Agrárias/UFPR; 2018. 68 p.
STEINER C. Biochar carbon sequestration. University of Georgia, Biorefining and Carbon Cycling Program, Athens, GA. 2008;30602.
TRAN H.N.; YOU S.J.; CHAO H.P. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manage. Res. 2016;34(2):129-38.
UCHIMIYA M.; WARTELLE L.H.; KLASSON K.T.; FORTIER C.A.; LIMA I.M. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food. Chem. 2011;59(6):2501-10.
WANG Z.; LIU K.; XIE L.; ZHU H.; JI S.; SHU X. Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks. J. Anal. Appl. Pyrolysis. 2019;142:104659.
Downloads
Veröffentlicht
Versionen
- 2022-07-28 (2)
- 2020-12-04 (1)