Evaluation of polypropylene degradation with commercial additives in different media of exposure
DOI:
https://doi.org/10.5902/2236117062690Schlagworte:
Polypropylene, Additives, Degradation mediaAbstract
Polypropylene (PP) is one of the most widely used polymers in the world, mainly due to its versatility, good properties, and low cost. However, since it is not easily degraded in the natural environment, several research projects have been developed to increase its biodegradability. The use of pro-degrading additives has been explored, as they promote the process of polymer degradation. Nevertheless, few studies have evaluated the degradation of these materials in natural aqueous environments such as rivers and lakes, which contain large amounts of PP waste. The goal of this study was to evaluate the degradation of polypropylene, as well as the biodegradation of PP through the incorporation of two additives of different natures, organic and enzymatic. For this purpose, PP blends were produced with 4% additive, which has the purpose of conferring biodegradability to the material, since polypropylene has high resistance to degradation. In order to verify the behavior of the materials against degradation tests with 2 different media (saline and fresh water) for a period of 6 months, the samples were characterized by Fourier Transformed Infrared Spectroscopy and Field emission scanning electron microscopy. The characterizations were carried out in order to verify the changes in the structural characteristics and in the morphology of the materials caused by the incorporation of the additive and by the exposure to the degradation media. From the results obtained, it was observed that the additives influenced the degradation of PP. In addition, the enzyme additive and the saline media caused more significant changes in the properties analyzed, indicating greater influence on the degradation process. It was concluded that the incorporation of commercial additives gives biodegradable properties to PP. Therefore, this study has an important role in the research and development of biodegradable materials in order to minimize the effects caused by plastic waste in the environment. Thus, the studied materials are an alternative in the field of plastic packaging, reducing the effects caused by plastic waste in the environment.
Downloads
Literaturhinweise
ABIPLAST. Perfil 2015: Indústria Brasileira de Transformação de Material Plástico. Associação Brasileira da Indústria do Plástico, 2015. Available in: <http://file.abiplast.org.br/download/2016/perfil_2015_ok.pdf>
ABIPLAST. Preview perfil 2016, 2016. Available in: <http://file.abiplast.org.br/file/noticia/2017/folder_preview_perfil2016_separado.pdf>
ABRE. Consumo de resinas plásticas cresce no brasil em 2017, 2018. Available in: <http://www.abre.org.br/noticias/consumo-de-resinas-plasticas-cresce-no-brasil-em-2017/>
ACHILIAS, D. S.; ROUPAKIAS, C. P.; MEGALOKONOMOS, A.A.; LAPPAS, E. V.; ANTONAKOU. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, v. 149, n. 3, p. 536-542, 2007.
ALBERTSSON, A. C.; BARENSTEDT, C.; KARLSSON, S.; LINDBERG, T. Degradation product pattern and morphology changes as means to differentiate abiotically and biotically aged degradable polyethylene. Polymer, v. 36, n. 16, p. 3075-3083, 1995.
AMERICAN SOCIETY FOR TESTING AND MATERIALS. Standard Test Method for pH of Soils, ASTM D4972–01. United States of America, 2001.
ARKATKAR, A.; ARUTCHELVI, J.; SUDHAKAR, M.; BHADURI, S.; UPPARA, P. V.; DOBLE, M. Approaches to enhance the biodegradation of polyolefins. The Open Environmental Engineering Journal, v. 2, n. 1, 2009.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Águas – Determinação da Demanda Bioquímica de Oxigênio (DBO) ¬– Método de Incubação (20 ºC, cinco dias), NBR -12614. Rio de Janeiro, 1992.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Águas – Determinação da Demanda Química de Oxigênio (DQO) – Método do Refluxo Aberto e Titulométrico, NBR - 10357. Rio de Janeiro, 1988.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Águas Minerais e de Mesa – Determinação de Turbidez – Método Nefelométrico, ABNT MB - 3227. Rio de Janeiro, 1990.
AUTA, H. S.; EMENIKE, C. U.; JAYANTHI, B.; FAUZIAH, S. H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, v. 127, p. 15-21, 2018.
BARBES, L.; RADULESCU, C.; STIHI, C. ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics, v. 66, n. 3, p. 765-777, 2014.
BOHLMANN, G. M. General Characteristics, Processabily, Industrial Applications and Market Evolution of Biodegradable Polymers. In: Handbook of Biodegradable Polymers. Shrospire: Rapra Techonology, 2005, Cap. 6, p. 183-218.
CARSON, H. S.; NERHEIM, M. S.; CARROLL, K. A.; ERIKSEN, M. The plastic-associated microorganisms of the North Pacific Gyre. Marine pollution bulletin, v. 75, n. 1-2, p. 126-132, 2013.
CHIELLINI, E.; CORTI, A.; D'ANTONE, S. Oxo-biodegradable full carbon backbone polymers–biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polymer Degradation and Stability, v. 92, n. 7, p. 1378-1383, 2007.
DAS, M. P.; KUMAR, S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech, v. 5, n. 1, p. 81-86, 2015.
FARIA, A. U.; MARTINS-FRANCHETTI, S. M. Biodegradação de filmes de polipropileno (PP), poli (3-hidroxibutirato) (PHB) e blenda de PP/PHB por micro-organismos das águas do Rio Atibaia. Polímeros, v. 20, n. 2, p. 141-147, 2010.
FLETCHER, M. Diversity of surfaces and adhesion strategies. Bacterial adhesion: molecular and ecological diversity, v. 19, n. 1, 1996.
FONTANELLA, S.; BONHOMME, S.; BRUSSON, J. M.; PITTERI, S.; SAMUEL, G.; PICHON, G.; LACOSTE, J.; FROMAGEOT, D.; LEMAIRE, J.; DELORT, A. M Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polymer degradation and stability, v. 98, n. 4, p. 875-884, 2013.
FORD, T. E. The microbial ecology of water distribution and outfall systems. Aquatic Microbioloqy: An ecoloqical approach. 1993.
GU, J. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. International biodeterioration & biodegradation, v. 52, n. 2, p. 69-91, 2003.
GULMINE, J. V.; JANISSEK, P. R.; HEISE, H. M.; AKCELRUD, L. Degradation profile of polyethylene after artificial accelerated weathering. Polymer degradation and stability, v. 79, n. 3, p. 385-397, 2003.
HUSAROVA, L.; MACHOVSKY, M.; GERYCH, P.; HOUSER, J.; KOUTNY, M. Aerobic biodegradation of calcium carbonate filled polyethylene film containing pro-oxidant additives. Polymer Degradation and Stability, v. 95, n. 9, p. 1794-1799, 2010.
LAZAREVIC, D.; AOUSTINA, E.; BUCLET, N.; BRANDT, N. Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resources, Conservation and Recycling, v. 55, p. 246–259, 2010.
LIU, X.; GAO, C.; SANGWAN, P.; YU, L.; TONG, Z. Accelerating the degradation of polyolefins through additives and blending. Journal of Applied Polymer Science, v. 131, n. 18, 2014.
MATSUNAGA, M.; WHITNEY, P. J. Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonisation. Polymer Degradation and Stability, v. 70, n. 3, p. 325-332, 2000.
MIYAZAKI, K.; ARAI, T.; SHIBATA, K.; TERANO, M.; NAKATANI, H. Study on biodegradation mechanism of novel oxo-biodegradable polypropylenes in an aqueous medium. Polymer degradation and stability, v. 97, n. 11, p. 2177-2184, 2012.
MOHAMAD, N.; ZAINOL, N. S.,; RAHIM, F. F.; AB MAULOD, H. E.; RAHIM, T. A.; SHAMSURI, S. R.; AZAM, M. A.; YAAKUB, M. Y.; ABDOLLAH, M. F. B.; MANAF, M. E. A. Mechanical and morphological properties of polypropylene/epoxidized natural rubber blends at various mixing ratio. Procedia Engineering, v. 68, p. 439-445, 2013.
MONTAGNA, L. S.; FORTE, M. M. C.; SANTANA, R. M. C. Induced degradation of polypropylene with an organic pro-degradant additive. Journal of Materials Science and Engineering. A, v. 3, n. 2A, p. 123, 2013.
NEU, T. R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological reviews, v. 60, n. 1, p. 151, 1996.
OJEDA, T. F. M. Biodegradabilidade de materiais poliméricos. Rio Grande do Sul. 2008. 128 p. Tese de Doutorado – Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Brasil.
PEIXOTO, J.; SILVA, L. P.; KRUGER, R. H. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials, v. 324, p. 634-644, 2017.
PELEGRINI, K.; DONAZZOLO, I.; BRAMBILLA, V.; GRISA, A. M. C.; PIAZZA, D.; ZATTERA, A. J.; BRANDALISE, R. N. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science, v. 133, n. 15, 2016.
PIATTI, T. M.; RODRIGUES, R. A. F. Plásticos: características, usos, produção e impactos ambientais. Maceió: Edufal, 2005, 51 p
PLASTIC EUROPE. PlasticsEurope Annual Review 2017-2018. Brussels: Association of Plastic Manufacturers, 2018, 44 p.
POTTS, J. E.; CLENDINING, R. A.; ACKART, W. B.; NIEGISCH, W. D. In Polymer Science and Technology; Guillet, J., Ed. 1973.
ROSA, D. S.; PENTEADO, D. F.; CALIL, M. R. Propriedades Térmicas e Biodegradabilidade de PCL e PHB em um Pool de Fungos. Polímeros: Ciência e Tecnologia, v. 15, p. 75-80, jun. 2000.
SIVAN, A. New perspectives in plastic biodegradation. Current opinion in biotechnology, v. 22, n. 3, p. 422-426, 2011.
SKARIYACHAN, S.; PATIL, A. A.; SHANKAR, A.; MANJUNATH, M.; BACHAPPANAVAR, N.; KIRAN, S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation and Stability, v. 149, p. 52-68, 2018.
TAVARES, L. B.; ROCHA, R. G.; ROSA, D. S. An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films. Iranian Polymer Journal, v. 26, n. 4, p. 273-280, 2017.
THOMAS, N. L.; CLARKE, J.; MCLAUCHLIN, A. R.; PATRICK, S. G. Oxo-degradable plastics: degradation, environmental impact and recycling. Proceedings of the Institution of Civil Engineers: Waste and Resource Management, v. 165, n. 3, p. 133-140, 2012.
VEETHAHAVYA, K. S.; RAJATH, B. S.; NOOBIA, S.; KUMAR, B. M. Biodegradation of Low Density Polyethylene in Aqueous Media. Procedia Environmental Sciences, v. 35, p. 709-713, 2016.
WAHL, M. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine ecology progress series, v. 58, p. 175-189, 1989.
ZANIN, M.; MANCINI, S. D. Resíduos plásticos e reciclagem: aspectos gerais e tecnologia. 2º Ed. São Carlos: SciELO Books, 2015, 138 p.
Downloads
Veröffentlicht
Versionen
- 2022-07-28 (2)
- 2020-12-04 (1)