Greenhouse gas emissions and energy consumption in asphalt plants

Authors

DOI:

https://doi.org/10.5902/2236117062662

Keywords:

Global warming, Fuel, Paving.

Abstract

Hot-mix asphalt used in pavement layers is produced by asphalt plants. In Brazil, despite the fact that these industrial units produce greenhouse gases, no control or measurement protocol has yet been established. This study aims to quantify emissions in different asphalt plants, in terms of carbon dioxide equivalent (CO2eq) and energy consumption. Asphalt plants were selected according to their type (batch or drum mix); production capacity (80 to 340 t/h), and whether mobile or fixed. In each plant, emissions were quantified and the energy consumption spent on drying and heating aggregates in the dryer drum was evaluated. The fuels used in the drier drum such as low pour point (LPP) oil, liquefied petroleum gas (LPG), and natural gas (NG) were evaluated and compared. The methodology consisted of surveying the thermal power of the dryer drum specified on the suppliers' catalog to calculate the volume of fuel required per ton of asphalt mixture produced. Based on the criterion of the lower calorific value of each fuel, the volume of fuel used was calculated according to the production of the asphalt plants. Through the GHC protocol tool, the quantification of emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) gases was obtained, and then transformed into CO2eq emissions. As a result, lower energy consumption was observed in the mobile batch plants and higher consumption in the mobile counterflow drum mix plants. On average, 27.69% less energy per ton of processed aggregate was needed compared to the mobile counterflow plants. The use of natural gas in the dryer drum and for all plant models was the least emissive fuel. The results showed that for the mobile batch type with a capacity of 140 t/h, the emission was 13.62 kg of CO2eq / t. On the other hand, with the mobile counterflow type with a capacity of 200 t/h, 13.64 kg of CO2eq/t was produced. Finally, with the fixed counterflow type with a production capacity of 240 t/h and 300 t/h, emissions of 13.67 kg of CO2eq/t were obtained. Through this study, the mobile batch plant with a capacity of 140 t/h using natural gas showed the least environmental impact. When natural gas was used, this model obtained energy consumption and emissions 54.5% lower than the mobile counterflow model with a capacity of 50 t/h which showed the worst environmental performance.

Downloads

Download data is not yet available.

Author Biographies

Maicon Basso dos Santos, Federal University of Santa Catarina, Florianópolis, SC

Engenheiro Civil graduado pela Universidade de Caxias do Sul

Jefferson Candido, Federal University of Santa Catarina, Florianópolis, SC

Graduando em Engenharia Civil pela UFSC

Sofia de Souza Baulé, Federal University of Santa Catarina, Florianópolis, SC

Graduada em Engenharia Civil pela Universidade Federal de Santa Catarina (2018). Mestranda em Engenharia Civil pelo Programa de Pós-graduação em Engenharia Civil (PPGEC) da Universidade Federal de Santa Catarina (2019-2021)

Liseane Padilha Thives, Federal University of Santa Catarina, Florianópolis, SC

Possui graduação em Engenharia Civil pela Universidade Federal de Santa Catarina (1989), mestrado em Engenharia Civil pela Universidade Federal de Santa Catarina (2001) e doutorado em Engenharia Civil, área de conhecimento Vias de Comunicação, pela Universidade do Minho em Portugal (2009) e em Infra-Estrutura e Gerência Viária pela Universidade Federal de Santa Catarina (2009)

References

ADEBA, Associação Brasileira das Empresas Distribuidoras de Asfalto. Mercado – 2020 – Evolução do Mercado [Internet]. Available from: http://www.abeda.org.br/mercado/#mercado-evolucao

ANP - AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS [Internet]. Brasília: Ministério de Minas e Energia [cited 2020 15 aug]. Gás Natural. Available from: http://www.anp.gov.br/gas-natural

ALMEIDA-COSTA, A.; BENTA, A. Economic and Environmental impact study of warm mix asphalt compared to hot mix asphalt. Journal of Cleaner Production. 2016;112:2308-2317.

ANDROJIĆ, I.; ALDUK, Z. D.; DIMTER, S.; RUKAVINA, T. Analysis of impacto f aggregate moisture contente on energy demand during the production of hot mix asphalt (HMA). Journal of Cleaner Production. 2020;244:1-10.

AMMANN. Usinas de Asfalto; 2020 [Internet]. Gravataí (Brasil): Ammann Group; 2020 [cited 2020 Mar 22]. Available from: https://www.ammann.com/pt-br/plants/asphalt-plants

BENNINGHOVEN. Produtos Benninghoven; 2020 [Internet]. Porto Alegre (Brasil): Wirtgen Group; 2020 [cited 2020 mar 21]. Available from: https://www.wirtgen-group.com/ocs/pt-tl/benninghoven/produtos-benninghoven-96-c/

BERNUCCI, L. B.; MOTTA, L. M. G.; CERATTI, J. A. P.; SOARES, J. B. Pavimentação asfáltica: Formação básica para engenheiros. 3rd. ed. Rio de Janeiro: ABEDA, 2008.

BRASIL, Ministério do Meio Ambiente. Conselho Nacional do Meio Ambiente – CONAMA. Resolução nº 491/18. Dispõe sobre padrões de qualidade do ar. Brasília (Brasil): SEMA, 2018.

BRASIL, Ministérios do Meio Ambiente [Internet]. Brasília: Efeito Estufa e Aquecimento Global [cited 2020a apr 22]. Available from: https://www.mma.gov.br/informma/item/195-efeito-estufa-e-aquecimento-global

BRASIL, Ministério da Ciência, Tecnologia, Inovação e Comunicações [Internet]. Brasília: Entenda o Efeito Estufa [cited 2020b apr 21]. Available from: https://www.mctic.gov.br/mctic/opencms/ciencia/SEPED/clima/Comunicacao_Nacional/eee.html.

BUECHE, N.; DUMONT, A. G. Energy in warm mix asphalt. In: Proceedings of the 5th Eurasphalt & Eurobitume Congress [Internet]; 2012 13-15th June; Istanbul, Turkey. 2012 [cited 2020 aug 7]. Available from: https://www.h-a-d.hr/pubfile.php?id=513

CIBER. Usinas de asfalto móveis contínuas; 2020 [Internet]. Porto Alegre (Brasil): Wirtgen Group; 2020 [cited 2020 mar 21]. Available from: https://www.wirtgen-group.com/ocs/pt-br/ciber/usinas-de-asfalto-moveis-continuas-107-c/

CNT, Confederação Nacional do Transporte. Pesquisa CNT de Rodovias 2019. Brasília (Brasil):CNT, 2019. 233 p.

EAPA, European Asphalt Pavement Association [internet]. Environmental guidelines on best available techniques (BAT) for the production of asphalt pavingmixes, 2007 [cited 2020 Aug 12]. Availabre from: https://pdfs.semanticscholar.org/7701/ef8c7f55da75e9a73774b303747b876d4c20.pdf?_ga=2.54311464.1250237106.1597181299-1594946764.1581605083

Fundação Getúlio Vargas [Internet]. Rio de Janeiro: Programa brasileiro GHC Protocol, 2008 – Ferramenta de cálculo [cited 2020 Mar 05]. Available from: https://www.ghgprotocolbrasil.com.br/

HUANG, Y.; BIRD, R.; HEIDRICH, O. Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal Of Cleaner Production. 2009;17:283-296.

INDOT, Indiana Department of Transportation. Certified hot mix asphalt technician manual. State of Indiana (USA): Department of Transportation, 2016. 636p.

KRISTJÁNSDÓTTIR, Ó.; MUENCH, S. T.; MICHAEL, L.; BURKE, G. Assessing Potential for Warm-Mix Asphalt Technology Adoption. Transportation Research Record, 2007;2040(1):91–99.

MARINI. Produtos; 2020 [Internet]. Cachoeirinha (Brasil): Fayat Group; 2020 [cited 2020 Mar 19]. Available from: http://marinilatinamerica.com.br/products/.

MERIGHI, C. F.; SUZUKI, C. Y. Estudo do comportamento do revestimento de pavimento utilizando mistura asfáltica morna com adição de borracha moída de pneu na SPA-248/055. Transportes. 2017;25(4):136-146.

MILLET, D.; BISTAGNINO, L.; LANZAVECCHIA, C.; CAMOUS, R.; POLDMA, T. Does the potential of the use of LCA match the design team needs? Journal Of Cleaner Production. 2007;15:335-346.

MUENCH S T. Rodway Construction Sustainability Impacts: Review of Life-Cycle Assessments. Transportation Research Record, 2151(1), 36-45.

NAPA, National Asphalt Pavement Association. The Environmental Impact of Asphalt Plants SR 206 2014-05. Greenbelt, MD (USA), 2014. 3p.

NASA - National Aeronautics and Space Administration [Internet]. Washignton: The effects of climate change (USA) [cited 2020a aug 15]. Available from: https://climate.nasa.gov/effects/

NASA - National Aeronautics and Space Administration [Internet]. Washignton: The Causes of Climate Change (USA) [cited 2020b apr 28]. Available from: https://climate.nasa.gov/causes/

PARANHOS, R. S.; PETTER, C. O. Multivariate data analysis applied in Hot-Mix asphalt plants. Resources, Conversvation and Recycling. 2013;73:1-10.

PEINADO, D.; VEGA, M.; GARCÍA-HERNANDO, N.; MARUGÁN-CRUZ, C. Energy and exergy analysis in an asphalt plant’s rotary dryer. Applied Thermal Engineering. 2011;31(6–7):1039–1049.

PENG, B.; CAI, C.; YIN, G.; LI, W.; ZHAN, Y. Evaluation system for CO2 emission of hot asphalt mixture. Journal of Traffic and Transportation Engineering. 2015;2(2):116-124.

PETERSON, B. Drum vs. batch plant: learn the differences that will make your asphalt mix just right [Internet].

Westwood (MA): Chase Corporation; 2018 May 10 [cited 2020 may 21]. Available from: https://blog.chasecorp.com/bridge-and-highway/drum-vs.-batch-plant-learn-the-differences-that-will-make-your-asphalt-additive-product-just-right

PETROBRAS. Óleo combustível: Informações técnicas [Internet]. Rio de Janeiro (Brasil) v. 1.4 [cited 2020a aug 15]. Available from: http://sites.petrobras.com.br/minisite/assistenciatecnica/public/downloads/manual-tecnico-oleo-combustivel-assistencia-tecnica-petrobras.pdf

PETROBRAS. Gás Liquefeito de petróleo: Informações técnicas [Internet]. Rio de Janeiro (Brasil) [cited 2020 aug 15]. Available from: http://sites.petrobras.com.br/minisite/assistenciatecnica/public/downloads/manual-tecnico-gas-liquefeito-petrobras-assistencia-tecnica-petrobras.pdf

PEURIFOY, R. L.; SCHEXNAYDER, C. J.; SHAPIRA, A.; SCHMITT, R. L. Planejamento, equipamentos e métodos para a construção civil. 8. ed. Porto Alegre: Amgh Editora Ltda, 2015. p. 466-512.

RUBIO, M. D. L.; MORENO, F.; MARTÍNEZ-ECHEVARRÍA, M. J.; MARTÍNEZ, G.; VÁZQUEZ, J. M. Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt. Journal of Cleaner Production. 2013;41:1–6.

USEPA, United State Environmental Protection Agency. AP - 42: Compilation of air emissions factors. Chapter 11.1: Hot mix asphalt plants emission assessment report. Research Triangle Park, NC (USA), 2004. 63p.

USEPA. United State Environmental Protection Agency [Internet]. Washigton: Overview of Greenhouse Gases [cited 2020 mar 29]. Available from: https://www.epa.gov/ghgemissions/overview-greenhouse-gases.

VENTURA, A.; MONERÓN, P.; JULLIEN, A.; TAMAGNY, P.; OLARD, F.; ZAVAN, D. Environmental comparison at industrial scale of hot and halfwarm mix asphalt manufacturing processes. In: Transportation Research Board 88th Annual Meeting [Internet]; 2009 January 11-15; Washington. p. 12.

WANG, T.; LEE, I. S.; KENDALL, A.; HARVEY, J.; LEE, E. B.; KIM, C. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. Journal Of Cleaner Production. 2012;33:86-96.

WHITE, P.; GOLDEN, J. S.; BILIGIRI, K. P.; KALOUSH, K. Modeling climate change impacts of pavement production and construction. Resources, Conservation and Racycling. 2010;54:776-782.

XU, B.; LIN, B. Can expanding natural gas consumption reduce China’s CO2 emissions?. Energy Economics. 2019;81:393–407.

ZANETTI, M. C.; SANTAGATA, E.; FIORE, S.; RUFFINO, B.; DALMAZZO, D.; LANOTTE, M. Evolution of potential gaseous emissions of asphalt rubber bituminous mixtures. Proposal of new laboratory test procedure. Construction and Building Materials. 2016;113:870-879.

Downloads

Published

2020-12-04 — Updated on 2022-07-28

Versions

How to Cite

Santos, M. B. dos, Candido, J., Baulé, S. de S., Oliveira, Y. M. M. de, & Thives, L. P. (2022). Greenhouse gas emissions and energy consumption in asphalt plants. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e7. https://doi.org/10.5902/2236117062662 (Original work published December 4, 2020)