Cosmetic wastewater primary treatment by fenton process and final polishing adsorption

Lisiée Manzoli Gonçalves Pereira, Maria Eugênia de Oliveira Ferreira, Núbia Natália de Brito, Indianara Conceição Ostroski

Abstract


This work aimed to integrate two wastewater treatment technologies, Fenton process as the primary treatment and adsorption aiming achieve maximum removal efficiency and adequation to the environmental and water legislations. Wastewater from a cosmetics industry plant in the metropolitan area of Goiânia (Brazil) was the object of this research. It was analysed environmental parameters as absorbance, total iron, chemical oxygen demand, pH, total phenols, conductivity, H2O2, dissolved oxygen, turbidity, and total solids. They were analyzed in between processes at all stages.  The effects of Fe2+ (18.42-257.89 mg L-1) and H2O2 (500-2300 mg L-1) concentrations and pH values (3.00-5.50) were studied for the Fenton process treatment. In adsorption, the activated carbon was characterized by infrared spectroscopy, elemental analysis, adsorption and desorption of N2 and thermogravimetry (TG/DTA). The effect of the contact time (4min-24h) and of the temperature variation in the system 20-60 °C were studied. By integrating the two technologies, a satisfactory removal rate was achieved for the analyzed parameters in the total time of treatment of 82 minutes


Keywords


Cosmetic wastewater; Processes applied; Physical and chemical characterization; Environmental parameters; Technology integration

Full Text:

HTML

References


AHMARUZZAMAN, M.; SHARMA, D. K. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science, v. 287, n. 1, p. 14–24, 2005. Disponível em: http://www.sciencedirect.com/science/article/pii/S0021979705000858

.

ALJEBOREE, A. M.; ALSHIRIFI, A. N.; ALKAIM, A. F. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, v. 10, p. S3381–S3393, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S1878535214000239.

AMOSA, M. K.; JAMI, M. S.; ALKHATIB, M. F. R.; TAJARI, T.; JIMAT, D. N.; OWOLABI, R. U. Turbidity and suspended solids removal from high-strength wastewater using high surface area adsorbent: Mechanistic pathway and statistical analysis. Cogent Engineering, v. 3, n. 1, p. 1162384, 31 dez. 2016. Disponível em: https://doi.org/10.1080/23311916.2016.1162384.

ANDRADE, P. M.; CARVALHO, M. A. F.; MIRANDA, A. S.; MARQUES, H. R.; CAMPOS, S. R.; BRITO, N. Remediation of textile dyes mixtures using TiO2/Vis Photocatalysis and Fenton Fe2+/H2O2. Brazilian Journal of Biosystems Engineering, v. 9, n. 4, p. 328–338, 2015.

APHA. Standard methods for the examination of water and wastewater. [s.l: s.n.]v. 20 Ed.

AYRANCI, E.; DUMAN, O. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. Journal of Hazardous Materials, v. 136, n. 3, p. 542–552, 2006. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304389405008393.

BABUPONNUSAMI, A.; MUTHUKUMAR, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, v. 2, n. 1, p. 557–572, 2014. Disponível em: http://www.sciencedirect.com/science/article/pii/S2213343713002030.

BARRETT, E. P.; JOYNER, L. G.; HALENDA, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, v. 73, n. 1, p. 373–380, 1951. Disponível em: http://dx.doi.org/10.1021/ja01145a126.

BAUTISTA, P.; CASAS, J. A.; ZAZO, J. A.; RODRIGUEZ, J. J.; MOHEDANO, A. F. Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater. Water Science and Technology, v. 70, n. 3, p. 472–478, 28 maio 2014. Disponível em: http://dx.doi.org/10.2166/wst.2014.246.

BEHVANDI, A.; SAFEKORDI, A. A.; KHORASHEH, F. Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study. Journal of Porous Materials, v. 24, n. 1, p. 165–178, 2017. Disponível em: https://doi.org/10.1007/s10934-016-0249-1.

BERGER, K. P.; KOGUT, K. R.; BRADMAN, A.; SHE, J.; GAVIN, Q.; ZAHEDI, R.; PARRA, K. L.; HARLEY, K. G. Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study. Journal of Exposure Science & Environmental Epidemiology, 2018. Disponível em: https://doi.org/10.1038/s41370-017-0003-z.

BLACK, S.; MULLER, F. On the Effect of Temperature on Aqueous Solubility of Organic Solids. Organic Process Research & Development, v. 14, n. 3, p. 661–665, 21 maio 2010. Disponível em: https://doi.org/10.1021/op100006y.

BOEHM, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, v. 32, n. 5, p. 759–769, 1994. Disponível em: http://www.sciencedirect.com/science/article/pii/0008622394900310.

BOHLI, T.; OUEDERNI, A. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase. Environmental Science and Pollution Research, v. 23, n. 16, p. 15852–15861, 2016. Disponível em: http://dx.doi.org/10.1007/s11356-015-4330-0.

BRASIL. Resolução no 430, de 13 de maio de 2011Conselho Nacional do Meio Ambiente. [s.l: s.n.].

BULUT, Y.; KARAER, H. Adsorption of Methylene Blue from Aqueous Solution by Crosslinked Chitosan/Bentonite Composite. Journal of Dispersion Science and Technology, v. 36, n. 1, p. 61–67, 2015. Disponível em: https://doi.org/10.1080/01932691.2014.888004.

CHENG, S.; ZHANG, L.; XIA, H.; ZHANG, S.; PENG, J.; WANG, S. Crofton weed derived activated carbon by microwave-induced KOH activation and application to wastewater treatment. Journal of Porous Materials, v. 23, n. 6, p. 1597–1607, 2016. Disponível em: https://doi.org/10.1007/s10934-016-0221-0.

CHIANG, H.-L.; HUANG, C. P.; CHIANG, P. C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere, v. 47, n. 3, p. 257–265, 2002. Disponível em: http://www.sciencedirect.com/science/article/pii/S0045653501002156.

CINCINELLI, A.; MARTELLINI, T.; COPPINI, E.; FIBBI, D.; KATSOYIANNIS, A. Nanotechnologies for Removal of Pharmaceuticals and Personal Care Products from Water and Wastewater. A Review. Journal of Nanoscience and Nanotechnology, v. 15, 2015.

DAFFALA, S.; MUKHTAR, H.; SHAHARUN, M. Characterization of Adsorbent DEveloped from Rice Husk: Effect of Surface Function Group on Phenol Adsorption. Journal of Applied Sciences, v. 10, n. 12, p. 1060–1067, 2010.

DE ANDRADE, P.; RAFAEL DUFRAYER, C.; DE BRITO, N. Treatment of Real Cosmetic Effluent Resulting from the Manufacture of Hair Conditioners by Reduction Degradation, Adsorption and the Fenton Reaction. Ozone: Science & Engineering, p. 1–10, 2018.

DE OLIVEIRA FERREIRA, M. E.; VAZ, B. G.; BORBA, C. E.; GONÇALVES, C.; CONCEIÇÃO, I. Microporous and Mesoporous Materials Modified activated carbon as a promising adsorbent for quinoline removal. Microporous and Mesoporous Materials, v. 277, n. November 2018, p. 208–216, 2019. Disponível em: https://doi.org/10.1016/j.micromeso.2018.10.034.

DHILLON, G. S.; KAUR, S.; PULICHARLA, R.; BRAR, S. K.; CLEDÓN, M.; VERMA, M.; SURAMPALLI, R. Y. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. International Journal of Environmental Research and Public Health, v. 12, n. 5, p. 5657–5684, 2015.

DUAN, F.; LI, Y.; CAO, H.; WANG, Y.; CRITTENDEN, J. C.; ZHANG, Y. Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere, v. 125, p. 205–211, 2015. Disponível em: http://www.sciencedirect.com/science/article/pii/S0045653514015070.

ELMOLLA, E. S.; CHAUDHURI, M. Combined photo-Fenton–SBR process for antibiotic wastewater treatment. Journal of Hazardous Materials, v. 192, n. 3, p. 1418–1426, 2011. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304389411008326.

ERKAN, G. K. A. H. S.; TOP, E. S. S.; BILGILI, H. K. M. S. Modeling and optimizing Fenton and electro ‑ Fenton processes for dairy wastewater treatment using response surface methodology. International Journal of Environmental Science and Technology, v. 16, n. 5, p. 2343–2358, 2019. Disponível em: https://doi.org/10.1007/s13762-018-1846-0.

FARIA, P. C. C.; ÓRFÃO, J. J. M.; PEREIRA, M. F. R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, v. 38, n. 8, p. 2043–2052, 2004. Disponível em: http://www.sciencedirect.com/science/article/pii/S0043135404000570.

FENG, J.; LI, S.; SHENG, Y.; XIONG, Y.; LAN, S.; TIAN, S.; KONG, L.; FAN, C. Remarkable improvement of cycling Fenton process for catalytic degradation of phenol: Tuning of triggering effect. Applied Catalysis A: General, v. 542, p. 21–27, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0926860X17301990.

FONTMORIN, J.-M.; SILLANPÄÄ, M. Dewatering and removal of metals from urban anaerobically digested sludge by Fenton’s oxidation. Environmental Technology, v. 38, n. 4, p. 495–505, 16 fev. 2017. Disponível em: https://doi.org/10.1080/09593330.2016.1199598.

GANZENKO, O.; OTURAN, N.; SIRÉS, I.; HUGUENOT, D.; VAN HULLEBUSCH, E. D.; ESPOSITO, G.; OTURAN, M. A. Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environmental Chemistry Letters, v. 16, n. 1, p. 281–286, 2018.

GAUTAM, S. B.; ALAM, S.; KAMSONLIAN, S. Adsorption of As ( III ) on Iron Coated Quartz Sand : Influence of Temperature on the Equilibrium Isotherm , Thermodynamics and Isosteric Heat of Adsorption Analysis. International Journal of Chemical Reactor Engineering, v. 14, n. 1, p. 289–298, 2016.

GIANNAKIS, S.; LÓPEZ, M. I. P.; SPUHLER, D.; PÉREZ, J. A. S.; IBÁÑEZ, P. F.; PULGARIN, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental, v. 199, p. 199–223, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S0926337316304477.

GUO, J.-S.; ABBAS, A. A.; CHEN, Y.-P.; LIU, Z.-P.; FANG, F.; CHEN, P. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Journal of Hazardous Materials, v. 178, n. 1, p. 699–705, 2010. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304389410001809.

GÜRSES, A.; AÇIKYILDIZ, M.; GÜNEŞ, K.; GÜRSES, M. S. Dyes and pigments. Cham: Springer International Publishing, 2016.

HUBERT, E.; WOLKERSDORFER, C. Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA, v. 41, n. 4, p. 490–500, 2015.

KAVITHA, V.; PALANIVELU, K. Degradation of phenol and trichlorophenol by heterogeneous photo-Fenton process using Granular Ferric Hydroxide®: comparison with homogeneous system. International Journal of Environmental Science and Technology, v. 13, n. 3, p. 927–936, 2016.

KIM, H.; KO, Y.; LEE, S.; HONG, S. W.; LEE, W.; CHOI, J. Degradation of Organic Compounds in Actual Wastewater by Electro-Fenton Process and Evaluation of Energy Consumption. 2018.

LEE, M.; NAM, K. T.; KIM, J.; LIM, S. E.; YEON, S. H.; LEE, B.; LEE, J. Y.; LIM, K.-M. Evaluation of ocular irritancy of coal-tar dyes used in cosmetics employing reconstructed human cornea-like epithelium and short time exposure tests. Food and Chemical Toxicology, v. 108, p. 236–243, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0278691517304519.

LI, L.; QUINLIVAN, P. A.; KNAPPE, D. R. U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon, v. 40, n. 12, p. 2085–2100, 2002. Disponível em: http://www.sciencedirect.com/science/article/pii/S0008622302000696.

LIPPENS, B. C.; DE BOER, J. H. Studies on pore systems in catalysts: V. The t method. Journal of Catalysis, v. 4, n. 3, p. 319–323, 1965.

LYU, C.; ZHOU, D.; WANG, J. Removal of multi-dye wastewater by the novel integrated adsorption and Fenton oxidation process in a fluidized bed reactor. Environmental Science and Pollution Research, p. 20893–20903, 2016. Disponível em: http://dx.doi.org/10.1007/s11356-016-7272-2.

MA, J.; HUANG, D.; ZOU, J.; LI, L.; KONG, Y.; KOMARNENI, S. Adsorption of methylene blue and Orange II pollutants on activated carbon prepared from banana peel. Journal of Porous Materials, v. 22, n. 2, p. 301–311, 2015. Disponível em: https://doi.org/10.1007/s10934-014-9896-2.

MA, X.-J.; XIA, H.-L. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation. Journal of Hazardous Materials, v. 162, n. 1, p. 386–390, 2009. Disponível em: http://www.sciencedirect.com/science/article/pii/S030438940800736X.

MAILLER, R.; GASPERI, J.; COQUET, Y.; DEROME, C.; BULETÉ, A.; VULLIET, E.; BRESSY, A.; VARRAULT, G.; CHEBBO, G.; ROCHER, V. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. Journal of Environmental Chemical Engineering, v. 4, n. 1, p. 1102–1109, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S2213343716300185.

MALIK, P. K. Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes and Pigments, v. 56, n. 3, p. 239–249, 2003. Disponível em: .

MANOCHA, S.; MOVALIYA, N. Studies on Pore Characteristics of Microporous Carbons Prepared with Different Types of Silica Templates. v. 8, n. 1, p. 17–24, 2007.

MARCINOWSKI, P. P.; BOGACKI, J. P.; NAUMCZYK, J. H. Cosmetic wastewater treatment using the Fenton, photo-Fenton and H 2O2/UV processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, v. 49, n. 13, p. 1531–1541, 2014.

MAZARJI, M.; AMINZADEH, B.; BAGHDADI, M.; BHATNAGAR, A. Removal of nitrate from aqueous solution using modified granular activated carbon. Journal of Molecular Liquids, v. 233, p. 139–148, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0167732217303045.

MELO, N. H. De; DE OLIVEIRA FERREIRA, M. E.; NETO, E. M. S.; MARTINS, P. R.; OSTROSKI, I. C. Environmental Nanotechnology , Monitoring & Management Evaluation of the adsorption process using activated bone char functionalized with magnetite nanoparticles. Environmental Nanotechnology, Monitoring & Management, v. 10, n. August, p. 427–434, 2018. Disponível em: https://doi.org/10.1016/j.enmm.2018.10.005.

MOOSA, A. A.; RIDHA, A. M.; KADHIM, N. A. Use of Biocomposite Adsorbents for the Removal of Methylene Blue Dye from Aqueous Solution. American Journal of Materials Science, v. 6, n. 5, p. 135–146, 2016.

MORAIS, W. O.; BRITO, N. N. Treatment of simulated wastewater via fenton reaction at a production line of sunscreen. Oxidation Communications, v. 38, n. 4A, p. 2261–2272, 1 jan. 2015.

MORENO-CASTILLA, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, v. 42, n. 1, p. 83–94, 2004. Disponível em: http://www.sciencedirect.com/science/article/pii/S000862230300469X.

MUNOZ, M.; DE PEDRO, Z. M.; PLIEGO, G.; CASAS, J. A.; RODRIGUEZ, J. J. Chlorinated Byproducts from the Fenton-like Oxidation of Polychlorinated Phenols. Industrial & Engineering Chemistry Research, v. 51, n. 40, p. 13092–13099, 10 out. 2012. Disponível em: https://doi.org/10.1021/ie3013105.

NAUMCZYK, J.; BOGACKI, J.; MARCINOWSKI, P.; KOWALIK, P. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environmental Technology, v. 35, n. 5, p. 541–548, 4 mar. 2014. Disponível em: https://doi.org/10.1080/09593330.2013.808245.

NORDIN, N.; HO, L.; ONG, S.; IBRAHIM, A. H.; WONG, Y.; LEE, S.; OON, Y.; OON, Y. Influence of Amaranth dye concentration on the efficiency of hybrid system of photocatalytic fuel cell and Fenton process. p. 23331–23340, 2017.

OCAÑA-GONZÁLEZ, J. A.; VILLAR-NAVARRO, M.; RAMOS-PAYÁN, M.; FERNÁNDEZ-TORRES, R.; BELLO-LÓPEZ, M. A. New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Analytica Chimica Acta, v. 858, p. 1–15, 2015. Disponível em: http://www.sciencedirect.com/science/article/pii/S0003267014008253.

OLIVEIRA, M. C.; NOGUEIRA, R. F. P.; NETO, J. A. G.; JARDIM, W. F.; ROHWEDDER, J. J. R. Flow injection spectrophotometric system for hydrogen peroxide monitoring in photo-Fenton degradation processes. Química Nova, v. 24, n. 2, p. 188–190, 2001.

OLIVEIRA, T. D.; MARTINI, W. S.; SANTOS, M. D. R.; MATOS, M. A. C.; ROCHA, L. L. Caffeine Oxidation in Water by Fenton and Fenton-Like Processes: Effects of Inorganic Anions and Ecotoxicological Evaluation on Aquatic Organisms. J. Braz. Chem. Soc., v. 26, n. 1, p. 178–184, 2015.

OTURAN, M. A.; AARON, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Critical Reviews in Environmental Science and Technology, v. 44, n. 23, p. 2577–2641, 2014. Disponível em: https://doi.org/10.1080/10643389.2013.829765.

PARIENTE, M. I.; MOLINA, R.; MELERO, J. A.; BOTAS, J. Á.; MARTÍNEZ, F. Intensified-Fenton process for the treatment of phenol aqueous solutions. Water Science and Technology, v. 71, n. 3, p. 359, 2014. Disponível em: http://dx.doi.org/10.2166/wst.2014.515.

PARK, J.; REGALBUTO, J. R. A Simple, Accurate Determination of Oxide PZC and the Strong Buffering Effect of Oxide Surfaces at Incipient Wetness. Journal of Colloid and Interface Science, v. 175, n. 1, p. 239–252, 1995. Disponível em: http://www.sciencedirect.com/science/article/pii/S002197978571452X.

PAWAR, V.; GAWANDE, S. An overview of the Fenton Process for Industrial Wastewater. Journal of Mechanical and Civil Engineering, p. 127–136, 2015.

PEGO, M.; CARVALHO, J.; GUEDES, D. SURFACE MODIFICATIONS OF ACTIVATED CARBON AND ITS IMPACT ON APPLICATION. Surface Review and Letters, v. 1830006, p. 1–10, 2017.

PERDIGÓN-MELÓN, J. A.; CARBAJO, J. B.; PETRE, A. L.; ROSAL, R.; GARCÍA-CALVO, E. Coagulation–Fenton coupled treatment for ecotoxicity reduction in highly polluted industrial wastewater. Journal of Hazardous Materials, v. 181, n. 1, p. 127–132, 2010. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304389410005509.

PEREIRA, C. A. M.; BRITO, N. N. Integration of treatment technologies with Fenton reagent for laboratory effluent remediation. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 13, n. 5, p. 1, 10 out. 2018. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1980-993X2018000500309&lng=en&nrm=iso&tlng=en.

PLIEGO, G.; ZAZO, J. A.; GARCIA-MUÑOZ, P.; MUNOZ, M.; CASAS, J. A.; RODRIGUEZ, J. J. Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview. Critical Reviews in Environmental Science and Technology, v. 45, n. 24, p. 2611–2692, 17 dez. 2015. Disponível em: https://doi.org/10.1080/10643389.2015.1025646.

PUYOL, D.; MONSALVO, V. M.; MOHEDANO, A. F.; SANZ, J. L.; RODRIGUEZ, J. J. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials, v. 185, n. 2, p. 1059–1065, 2011. Disponível em: http://www.sciencedirect.com/science/article/pii/S0304389410013026.

RAGASSON, M. K. Fenton’s Reagent Application in the Treatment of Leachate from Landfills. Especialize (revista on line), v. 4, n. 1, p. 1–5, 2013.

RENGARAJ, S.; MOON, S.-H.; SIVABALAN, R.; ARABINDOO, B.; MURUGESAN, V. Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Management, v. 22, n. 5, p. 543–548, 2002. Disponível em: http://www.sciencedirect.com/science/article/pii/S0956053X01000162.

RIO, S.; FAUR-BRASQUET, C.; LE, L.; COURCOUX, P.; LE, P. Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation –– application to air and water treatments. Chemosphere, v. 58, p. 423–437, 2005.

RODRIGUES, C. S. D.; NETO, A. R.; DUDA, R. M.; DE OLIVEIRA, R. A.; BOAVENTURA, R. A. R.; MADEIRA, L. M. Combination of chemical coagulation, photo-Fenton oxidation and biodegradation for the treatment of vinasse from sugar cane ethanol distillery. Journal of Cleaner Production, v. 142, p. 3634–3644, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S0959652616317255.

SHAFEEYAN, M. S.; DAUD, W. M. A. W.; HOUSHMAND, A.; SHAMIRI, A. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of Analytical and Applied Pyrolysis, v. 89, n. 2, p. 143–151, 2010. Disponível em: http://www.sciencedirect.com/science/article/pii/S0165237010001063.

SHETTY, R.; VERMA, S. Fenton ’ s Reagent for the Treatment of Pharmaceutical Industry Wastewater. International Journal of Science and Research, v. 4, n. 7, p. 3093–3096, 2015.

SOHRABI, M. R.; KHAVARAN, A.; SHARIATI, S.; SHARIATI, S. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, v. 10, p. S3523–S3531, 2017. Disponível em: http://www.sciencedirect.com/science/article/pii/S1878535214000549.

SU, E.-C.; HUANG, B.-S.; LIU, C.-C.; WEY, M.-Y. Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts. Renewable Energy, v. 75, p. 266–271, 2015. Disponível em: http://www.sciencedirect.com/science/article/pii/S096014811400617X.

SUNEETHA, M.; SUNDAR, B. S.; RAVINDHRANATH, K. Removal of fluoride from polluted waters using active carbon derived from barks of Vitex negundo plant. Journal of Analytical Science and Technology, v. 6, n. 1, p. 15, 2015. Disponível em: https://doi.org/10.1186/s40543-014-0042-1.

TANG, W. Z. Physicochemical treatment of hazardous wastes. [s.l.] Lewis Publishers, 2003.

VAISHNAVE, P.; KUMAR, A.; AMETA, R.; PUNJABI, P. B.; AMETA, S. C. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents. Arabian Journal of Chemistry, v. 7, n. 6, p. 981–985, 2014. Disponível em: http://www.sciencedirect.com/science/article/pii/S1878535210002832.

VENKATA, M.S.; CHANDRASEKHAR, R. N.; KARTHIKEYAN, J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials, v. 90, p. 189-204, 2002.

WANG, F. A novel magnetic activated carbon produced via hydrochloric acid pickling water activation for methylene blue removal. Journal of Porous Materials, v. 25, n. 2, p. 611–619, 2018. Disponível em: https://doi.org/10.1007/s10934-017-0474-2.

WANG, N.; ZHENG, T.; ZHANG, G.; WANG, P. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, v. 4, n. 1, p. 762–787, 2016. Disponível em: http://www.sciencedirect.com/science/article/pii/S2213343715301044.

WIEGAND, H. L.; ORTHS, C. T.; KERPEN, K.; LUTZE, H. V.; SCHMIDT, T. C. Investigation of the Iron–Peroxo Complex in the Fenton Reaction: Kinetic Indication, Decay Kinetics, and Hydroxyl Radical Yields. Environmental Science & Technology, v. 51, n. 24, p. 14321–14329, 19 dez. 2017. Disponível em: https://doi.org/10.1021/acs.est.7b03706.

XIONG, Q.; BAI, Q.; LI, C.; HE, Y.; SHEN, Y.; UYAMA, H. A cellulose acetate/Amygdalus pedunculata shell-derived activated carbon composite monolith for phenol adsorption. RSC Advances, v. 8, n. 14, p. 7599–7605, 2018. Disponível em: http://dx.doi.org/10.1039/C7RA13017A.

YARGIC, A. S.; OZBAY, N. Fenton and Photo-Fenton Degradation of Reaktoset Brilliant Orange/P-2R and Telon Turquoise/M-GGL Dyes: Effect of Operating Parameters and Kinetic Study. International Journal of Advanced Research in Chemical Science, v. 3, n. 2, p. 38–45, 2016. Disponível em: https://www.arcjournals.org/pdfs/ijarcs/v3-i2/6.pdf.

ZHANG, C.; SONG, W.; ZHANG, X.; LI, R.; ZHAO, S.; FAN, C. Synthesis and evaluation of activated carbon spheres with copper modification for gaseous elemental mercury removal. Journal of Porous Materials, v. 26, n. 3, p. 693–703, 2019. Disponível em: http://dx.doi.org/10.1007/s10934-018-0669-1.

ZHOU, H.; ZHEN, W.; ZHU, Q.; WU, X.; CHANG, Z.; LI, W. Role of the surface chemistry of activated carbons in dye removal from aqueous solution. International Journal of Minerals, Metallurgy, and Materials, v. 22, n. 7, p. 770–776, 2015. Disponível em: https://doi.org/10.1007/s12613-015-1133-8.

.




DOI: https://doi.org/10.5902/2236117040701

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

DEAR AUTHORS,

PLEASE, CHECK CAREFULLY BEFORE YOUR SUBMISSION:

- IF ALL AUTHORS "METADATA" (ORCID, LINK TO LATTES, SHORT BIOGRAPHY, AFFILIATION) WERE ADDED,

- THE CORRECT IDIOM YOUR SECTION,

- IF THE HIGHLIGHTS WERE ADDED,

- IF THE GRAPHIC ABSTRACTS WAS ADDED,

- IF THE REVIEWERS INDICATION WAS DONE,

- IF THE REFERENCES FORMAT ARE CORRECT(ABNT)

- IF THE RESOLUTION YOUR FIGURES (600 DPI) ARE SUITABLE

*******************************

PREZADOS AUTORES,

POR FAVOR, VERIFIQUE ATENTAMENTE ANTES DA SUBMISSÃO: 
- SE OS METADADOS (ORCID, LINK PRO LATTES, CURTA BIOGRAFIA E AFILIAÇÃO) DE "TODOS" OS AUTORES FORAM ADICIONADOS, 
- IDIOMA, 
- SE OS HIGHLIHTS FORAM ADICIONADOS, 
- SE O GRAPHICAL ABSTRACT FOI ADICIONADO, 
- SE A INDICAÇÃO DOS REVISORES FOI FEITA, 
- SE O FORMATO DAS REFERÊNCIAS ESTÁ ADEQUADO (ABNT) 
- SE A RESOLUÇÃO SUAS FIGURAS (600 DPI) ESTÁ ADEQUADA.

 

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

**************************************************

WE ARE ON FACEBOOK! (You are our guest!)

 

Digital Object Identifier (DOI): 10.5902/22361170

Contact: reget.ufsm@gmail.com

...................................................................................


Accesses since 19/06/2012

...................................................................................

Sponsors: