Chemical control of Aedes aegypti: A review on effects on the environment and human health
DOI:
https://doi.org/10.5902/2236117029795Keywords:
Aedes aegypti, Insecticides, Environmental, Toxicity.Abstract
Aedes mosquitoes are known to be infected by arboviruses causing disease such as dengue, zika fever, and chikunguya fever, and subsequently transmit them, to humans through the bite of infected females. Chemical control is a measure adopted as part of sustainable management and integrated vector control for public health. There are four principal classes of insecticides used for controlling mosquitoes, all being neurotoxic: organochlorides, organophosphates, carbamates, and pyrethroids. The objective of this work was to review reports on the environmental effects of the insecticides most commonly used for controlling Ae. aegypti. This bibliographic study was conducted using articles and books available in the literature with no time restriction. The databases accessed were: Google Scholar, Pubmed, SciELO, and ScienceDirect. These insecticides exhibit toxicity to the environment, and may accumulate in food and water and in the body of vertebrates. Resistance to different insecticides is a problem when the mode of control is chemical, because insects survive insecticide application and higher doses are necessary for controlling the vectors. Considering these results, the ideal method would be the newly proposed means of mosquito control using technology related to modern biotechnology.Downloads
References
Becker N, Zgomba M, Petric D, Dahl C, Boase C, Lane J, et al. Mosquitoes and their control. 1. ed. New York: Kluwer Academic/Plenum Publisher; 2003. p. 498.
Bellinato DF, Viana-Medeiros PF, Araújo SC, Martins A, Lima JBP, et al. Resistance Status to the Insecticides Temephos, Deltamethrin, and Diflubenzuron in Brazilian Aedes aegypti Populations. BioMed Research International. 2016; 1-12.
Braga AI, Valle D. Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiol. Serv. Saúde. 2007; 16(4):279-273.
Consoli RAGB, Oliveira RL. Principais mosquitos de importância sanitária no Brasil. 1.ed. Rio de Janeiro: Editora FIOCRUZ, 1994. p. 228.
Crinnion WJ. Environmental Medicine, Part 4: Pesticides – Biologically Persistent and Ubiquitous Toxins. Alternative Medicine Review. 2000; 5(5):432-447.
Ejaz S, Akram W, Lim CW, Lee JJ, Hussain I. Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Exp. Oncol. 2004; 26(2):98-105.
Escámez JC, Rubí JCM, Rodríguez FY. Intoxicación por Organoclorados, Carbamatos y Herbicidas. In: Cebrián JG, Rosety RDA, Coma MJ, Bello DG. Principios de Urgencias, Emergencias y Cuidados Críticos. 2006. Available from: http://tratado.uninet.edu/indice.html.
Flores AV, Ribeiro JN, Neves AA, Queiroz ELR. Organoclorados: um problema de saúde pública. Ambiente & Sociedade. 2004; 2(2).
Fundação Nacional da Saúde, Ministério da Saúde. Intoxicações por agrotóxicos. Brasília (Brasil): Ministério da Saúde. Guia de Vigilância Epidemiológica, 1998. 1-17 p.
Griza FT, Ortiz KS, Geremias D, Thiesen FY. Avaliação da contaminação por organofosforados em águas superficiais no município de Rondinha - Rio Grande do Sul. Quim. Nova. 2008; 31(7): 1631-1635.
Hemingway J, Hawkes NJ, Mccarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect.Biochem. Mol. Biol. 2004; 34(7):653-65.
Jayaraj R, Megha P, Sreedey P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. 2017; 9(3-4):90-100.
Manjarres-suarez A, Olivero-Verbel J. Chemical control of Aedes aegypti: a historical perspective. Rev. Costarr Salud Pública. 2013; 22(1):68-75
Mitra A, Chatterjee C, Mandal FB. Synthetic Chemical Pesticides and Their Effects on Birds. Research Journal in Environmental Toxicology. 2011; 5:81–96.
Murphy, AE, Long G. Zika virus: How much do we know about this bug? SciInsigt. 2016; 2(9):1-7.
Nganchamung T, Robson MG, Siriwong W. Association between blood cholinesterase activity, organophosphate pesticide residues on hands, and health effects among chili farmers in ubon ratchathani province, northeastern thailand thitirat. Rocz Panstw Zakl Hig. 2017; 68(2):175-183.
Palchick S. Chemical Control of Vectors. In: Beaty JB, Marquardt WC. The Biology of the Disease Vectors, Colorado: University Press of Colorado, 1996. p. 502-511.
Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet. Infect. Dis. 2007; 7:319–327.
Rose RI. Pesticides and public health: integrated methods of mosquito management. Emerging Infectious Diseases. 2001; 7(1):17-23.
Rothwell JT. Residues of zeta-cypermethrin in bovine tissues and milk following pour-on and spray application. Pest Management Science. West Sussex. 2001; 57(11):993-999.
Sarah BA, Yeboah PO, Golow A. Levels of Organochlorine Pesticide Residues in Grasscutter (Thryonomys swinderianus) Tissues. Research Journal of Environmental and Earth Sciences. 2011; 3(4):350–357.
Soo KM, Khalid B, Ching SM, Chee HY. Meta-analysis of dengue severity during infection by different dengue virus serotypes in primary and secondary infections. Plos one. 2016. http://dx.doi.org/10.1371/journal.pone.0154760
Teixeira CF, Augusto LGS, Morata TC. Saúde auditiva de trabalhadores expostos a ruído e inseticidas. Rev.Saúde Pública. 2003; 37(4):417-423.
Ware GW. An introduction to insecticides. 3. ed. Minnesota: University of Minnesota, 2000. p. 496.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Electronic Journal of Management, Education and Environmental Technology (REGET)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
DECLARATION