Maturidade em orientação a dados: proposta de boas práticas para instituições de ensino superior

Autores

DOI:

https://doi.org/10.5902/2318133889778

Palavras-chave:

Modelo de Maturidade, Orientação a Dados, Instituições de Ensino Superior

Resumo

A transformação digital tem sido uma tendência nas instituições de ensino superior, aumentando significativamente o volume de dados gerados por essas organizações. Em resposta às mudanças oportunizadas pela digitalização, as IES começaram a desenvolver estratégias para utilizar dados como suporte a seus processos e missão institucional. Reconhecendo a orientação a dados como fundamental para melhorar a eficiência organizacional, este estudo visa a expandir um modelo de maturidade em orientação a dados, especificamente adaptado para as IES, com base em boas práticas. A metodologia incluiu uma revisão da literatura para mapear publicações relevantes e identificar práticas-chave para serem incorporadas em um modelo de referência. O estudo oferece uma contribuição em dois aspectos principais: explora modelos de maturidade específicos para as IES, examinando a literatura e o contexto atual, e aborda as oportunidades e desafios da orientação a dados nas IES, destacando fatores críticos e boas práticas para aprimorar o uso de dados e a tomada de decisões. A revisão da literatura identificou 45 boas práticas de orientação a dados em seis dimensões organizacionais, que podem ser usadas pelas universidades para avaliar sua situação atual, identificar lacunas e guiar suas estratégias de transição nos diferentes níveis de maturidade.

Downloads

Biografia do Autor

Luana Souza de Andrade, Universidade Federal do Amazonas

Mestre em Governança, Tecnologia e Inovação pela Universidade Católica de Brasília.

Magno da Silva Correia, Serviço Social do Transporte e Serviço Nacional de Aprendizagem do Transporte

Mestre em Governança, Tecnologia e Inovação pela Universidade Católica de Brasília.

Hércules Antonio do Prado, Universidade Católica de Brasília

Doutor em Ciência da Computação pela UFRGS, atua como professor e pesquisador na Universidade Católica de Brasília, nos cursos de Bacharelado em Ciência da Computação e no Programa de Pós-Graduação em Governança, Tecnologia e Inovação da  Universidade Católica de Brasília.

Referências

ABDUL-AZEEZ, Oluwatosin; IHECHERE, Alexsandra Ogadimma; IDEMUDIA, Courage. Enhancing business performance: the role of data-driven analytics in strategic decision-making. International Journal of Management & Entrepreneurship Research, v. 6, n. 7, 2024, p. 2066-2081. DOI: https://doi.org/10.51594/ijmer.v6i7.1257

ABDULLAH, Mustafa. Digital maturity of the Egyptian universities: goal-oriented project planning model. Studies in Higher Education, 2023, p. 1-23. DOI: https://doi.org/10.1080/03075079.2023.2268633

AGGRAWAL, Nitin; PANDEY, Atul. Enhancing people management through strategic analytics in indian corporate landscape. In: KAUTISH, Sandeep Kumar. Using strategy analytics for business value creation and competitive advantage, IGI Global, 2024, p 116-155. DOI: https://doi.org/10.4018/979-8-3693-2823-1.ch006

AL-ALI, Maytha; MARKS, Adam. A digital maturity model for the education enterprise. Perspectives: Policy and Practice in Higher Education, v. 26, n. 2, 2022, p. 47-58. DOI: https://doi.org/10.1080/13603108.2021.1978578

ALENEZI, Mamdouh. Deep dive into digital transformation in higher education institutions. Education Sciences, v. 11, n. 12, 2021, p. 770. DOI: https://doi.org/10.3390/educsci11120770

ALKHALIL, Adel. Decision support model to adopt big data analytics in higher education systems. International Journal of Advanced and Applied Sciences, v. 8, n. 6, 2021, p. 67-78. DOI: https://doi.org/10.21833/ijaas.2021.06.008

ALVARENGA NETO, Rivadávia Correa Drummond de. Gestão do conhecimento em organizações: proposta de mapeamento conceitual integrativo. São Paulo: Saraiva, 2007.

ANDERSEN, Kim Normann; LEE, Jungwoo; METTLER, Tobias; MOON, M Jae. Ten misunderstandings about maturity models. ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, 21, Proceedings…, 2020, p. 261-266.

ANDERSON, Carl. Creating a data-driven organization: practical advice from the trenches. Sebastopol, EUA: O'Reilly Media, 2015.

ANTHONY, Stephen G; ANTHONY, Jiju. A leadership maturity model for implementing six sigma in academic institutions: using case studies to build and test theory. In: ANTHONY, Stephen G; ANTHONY, Jiju. Lean six sigma in higher education institutions. Bingley, RU: Emerald Publishing Limited, 2020, p. 97-120. DOI: https://doi.org/10.1108/978-1-80382-601-120221011

ATTARD, Judie; BRENNAN, Rob. Challenges in value-driven data governance. In: On the move to meaningful internet systems. OTM 2018 Conferences. Part II. Cham, Suíça: Springer International Publishing, 2018, p. 546-554. DOI: https://doi.org/10.1007/978-3-030-02671-4_33

AUER, Nadine; KALEMBA, Samira; STORMER, Christin; BOEHM, Ann-Katrin; CETIN, Hakan; GUTJAHR,, Anja; NEUMANN, Franziska; KERSKEN, Verena; WEBER, Gerhard; ZIMMERMANN, Gottfried. How to measure the accessibility maturity of organizations: a survey on accessibility maturity models for higher education. Frontiers in Computer Science, v. 5, 2023. DOI: https://doi.org/10.3389/fcomp.2023.1134320

BEAN, Randy; DAVENPORT, Thomas H. Companies are failing in their efforts to become data-driven. Harvard Business Review. Disponível em: https://hbr.org/2019/02/companies-are-failing-in-their-efforts-to-become-data-driven. Acesso em: 15 jun. 2024.

BECKER, Jörg; KNACKSTEDT, Ralf; PÖPPELBUß, Jens. Developing maturity models for IT management: A procedure model and its application. Business & Information Systems Engineering, v. 1, 2009, p. 213-222. DOI: https://doi.org/10.1007/s12599-009-0044-5

BERNDTSSON, Mikael; FORSBERG, Daniel; STEIN, Daniel; SVAHN, Thomas. Becoming a data-driven organisation. EUROPEAN CONFERENCE ON INFORMATION SYSTEMS, 26, 2018. Proceedings…, 2018.

BILKŠTYTĖ‐SKANĖ, Daina; AKSTINAITE, Vita. Strategic organizational changes: adopting data‐driven decisions. Strategic Change, v. 23, n. 2, 2024, p. 107-116. DOI: https://doi.org/10.1002/jsc.2566

BLEY, Katja; SCHÖN, Hendrik; STRAHRINGER, Susanne. Overcoming the ivory tower: a meta model for staged maturity models. In: HATTINGH, Marié; MATTHEE, Machdel; SMUTS, Hanlie; PAPPAS, I.; DWIVEDI, Yogesh K.; MÄNTYMÄKI, Matti (ed.). Responsible design, implementation and use of information and communication technology. Cham, Suíça: Springer, 2020, p. 337-349. DOI: https://doi.org/10.1007/978-3-030-44999-5_28

BRYNJOLFSSON, Erik; HITT, Lorin M.; KIM, Heekyung Hellen. Strength in numbers: how does data-driven decision making affect firm performance? SSRN Electronic Journal, 2011. https://dx.doi.org/10.2139/ssrn.1819486 DOI: https://doi.org/10.2139/ssrn.1819486

CARDOSO, Elsa; SU, Xiaomeng. Designing a business intelligence and analytics maturity model for higher education: a design science approach. Applied Sciences, v. 12, n. 9, 2022, 4625. DOI: https://doi.org/10.3390/app12094625

CARNICERO-PLAZA, Ignacio; GONZÁLEZ-GAYA, Cristina; ROSALES, Victor Francisco. The Transformation Process of the University into a Data Driven Organisation and Advantages It Brings: Qualitative Case Study. Sustainability, 13(22), 2022, p. 12611. DOI: https://doi.org/10.3390/su132212611

CHEN, Hsinchun; CHIANG, Roger H. L.; STOREY, Veda C. Business intelligence and analytics: from big data to big impact. MIS Quarterly, v. 36, 2012, p. 1165-1188. DOI: https://doi.org/10.2307/41703503

CHEONG, Lai Kuan; CHANG, Vanessa. The need for data governance: a case study. AUSTRALIASIAN CONFERENCE ON INFORMATION SYSTEMS. Proceedings..., 2007. Disponível em: https://core.ac.uk/download/pdf/301346974.pdf. Acesso em: 10 mar. 2024.

COMUZZI, Marco; PATEL, Anit. How organisations leverage big data: a maturity model. Industrial Management & Data Systems, v. 116, n. 8, 2016, p. 1468-1492. DOI: https://doi.org/10.1108/IMDS-12-2015-0495

CORALLO, Angelo; CRESPINO, Anna Maria; DEL VECCHIO, Vito; GERVASI, Massimiliano; LAZOI, MMariangela; MARRA, Manuela. Evaluating maturity level of big data management and analytics in industrial companies. Technological Forecasting and Social Change, v. 196, 2023, p. 122826. DOI: https://doi.org/10.1016/j.techfore.2023.122826

CORREIA, Magno da Silva. Rumo a um modelo de maturidade para organizações orientadas a dados. Brasília: UCB, 2022. 75f. Dissertação (Mestrado em Governança, Tecnologia e Inovação) – Universidade Católica de Brasília.

DAMA INTERNATIONAL. Dama-dmbok: data management body of knowledge. Technics Publications, 2017.

DANIEL, Ben K. Big Data and analytics in higher education: opportunities and challenges. British Journal of Educational Technology, v. 46, n. 5, 2015, p. 904-920. DOI: https://doi.org/10.1111/bjet.12230

DAVENPORT, Thomas H.; HARRIS, Jeanne. Competing on analytics: updated, with a new introduction: The new science of winning. Boston: Harvard Business Press, 2017.

DE BRUIN, Tonia; FREEZE, Ronald D; KULKARNI, Uday; ROSEMANN, Michael. Understanding the main phases of developing a maturity assessment model. AUSTRALASIAN CONFERENCE ON INFORMATION SYSTEMS, Proceedings…, Australasian Chapter of the Association for Information Systems, 2005. p. 8-19.

DRESCH, Aline; LACERDA, Daniel Pacheco; ANTUNES JÚNIOR, José Antonio Valle. Design science research: método de pesquisa para avanço da ciência e tecnologia. Porto Alegre: Bookman, 2015. DOI: https://doi.org/10.1007/978-3-319-07374-3

DUREK, Valentina; KADOIC, Nikola; REĐEP, Nina Begicevic. Assessing the digital maturity level of higher education institutions. INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 41, Proceedings…, IEEE, 2018, p. 671-676. DOI: https://doi.org/10.23919/MIPRO.2018.8400126

ENARO, Abeje Orsango; CHAKRABORTY, Sudeshna. A Review on the academic performance analysis of higher education students using data mining techniques. INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS, Proceedings…, IEEE, 2019. p. 256-260. DOI: https://doi.org/10.1109/IC3I46837.2019.9055632

ESPINOZA-GUZMÁN, Julia; CHÁVEZ, Maria Manuela Pintor; ZERMEÑO, Georgina Gomez. Maturity model for e-learning classroom, bimodal and virtual courses in higher education: a preliminary study. International Journal of Web-Based Learning and Teaching Technologies, v. 12, n. 1, 2017, p. 19-31. DOI: https://doi.org/10.4018/IJWLTT.2017010102

EUBANKS, David; EVERS JR, William; SMITH, Nancy F. Finding predictors in higher education. In: ELATIA, Samira; IPPERCIEL, Donald; ZAÏANE, Osmar R. (Eds) Data mining and learning analytics: applications in educational research, 2016, p. 41-53. http://dx.doi.org/10.1002/9781118998205.ch3 DOI: https://doi.org/10.1002/9781118998205.ch3

FERNANDES, José; MACHADO, Carolina Feliciana; AMARAL, Luis. Towards a readiness model derived from critical success factors, for the general data protection regulation implementation in higher education institutions. International Journal of Strategic Management and Decision Support Systems in Strategic Management, v. 28, n. 1, 2023, p. 4-19. DOI: https://doi.org/10.5937/StraMan2200033F

GAFTANDZHIEVA, Silvia; HUSSAIN, Sadiq; HILCENKO, Slavoljub; DONEVA, Rositsa; BOYKOVA, Kirina. Data-driven decision making in higher education institutions: State-of-play. International Journal of Advanced Computer Science and Applications, v. 14, 2023, n. 6. https://doi.org/10.14569/IJACSA.2023.0140642 DOI: https://doi.org/10.14569/IJACSA.2023.0140642

GHAFOORI, Arman; GUPTA, Manjul; MERHI, Mohammad I.; GOPTA, Samrat; SHORE, Adam P. Toward the role of organizational culture in data-driven digital transformation. International Journal of Production Economics, v. 271, 2024. https://doi.org/10.1016/j.ijpe.2024.109205 DOI: https://doi.org/10.1016/j.ijpe.2024.109205

GIL, Paulo Diniz; MARTINS, Susana da Cruz; MORO, Sérgio; COSTA, Joana Martinho A data-driven approach to predict first-year students’ academic success in higher education institutions. Education and Information Technologies, v. 26, n. 2, 2021, p. 2165-2190. DOI: https://doi.org/10.1007/s10639-020-10346-6

GÖKALP, Mert Onuralp; KAYABAY, Kerem; KOÇYIĞIT, Altan; EREN, Pekin Erhan. The development of the data science capability maturity model: a survey-based research. Online Information Review, v. 46, n. 3, 2022, p. 547-567. DOI: https://doi.org/10.1108/OIR-10-2020-0469

GRIFFIN, Gary W.; HOLCOMB, David. Measuring Success and Sustaining the Data Culture. In: GRIFFIN, Gary W., HOLCOMB, David. Building a data culture: the usage and flow data culture model. Cham, Suíça: Springer, p. 171-187. DOI: https://doi.org/10.1007/978-1-4842-9966-1_9

GUARDA, Teresa; VACA, Oscar Barrionuevo; VICTOR, José Avelino Moreira. Higher education students dropout prediction. In: ROCHA, Álvaro, FAJARDO-TORO, Carlos Hernan, RIOLA, José María (Eds). Developments and advances in defense and security: proceedings of MICRADS 2022. Singapore: Springer Nature, 2023, p. 121-128. DOI: https://doi.org/10.1007/978-981-19-7689-6_11

GUTIÉRREZ-RODRÍGUEZ, Álvaro; LÓPEZ-GARCÍA, José David; SANABRIA, Ricardo Alfonso; ACEVEDO-ZAPATA, Sandra. Industry 4.0 and digital transformation in higher education through the perspective of smart cites. WORKSHOPS AT THE FOURTH INTERNATIONAL CONFERENCE ON APPLIED INFORMATICS (CAIW), Proceedings…, Buenos Aires, 2021.

HARIN, R. S; SANMUKHAPRIAN, S. R. J.; RAGHURAM, P.; SREEDHARAN, V. Raja; ZOUADI, Tarik. Developing a capability maturity model for knowledge exchange dynamics among stakeholders and universities: evidence from Morocco higher education institution. IEEE Transactions on Engineering Management, 2023, p. 13531-13544. DOI: https://doi.org/10.1109/TEM.2023.3240927

ISKANDER, George Maher. Exploring the dimensions of e-learning maturity model. International Journal of Emerging Technologies in Learning, v. 7, n. 2, 2012, p. 32-38. DOI: https://doi.org/10.3991/ijet.v7i2.1986

KASHFI, Hanieh; FARAHANI, Bahar; FOTOHI, Reza; ALIEE, Fedeidoon Shams. A crisis-driven e-learning capability maturity model in the age of Covid-19: process-based maturity assessment. NATIONAL CONFERENCE ON ADVANCES IN ENTERPRISE ARCHITECTURE, 5, Proceedings…, IEEE, 2021, p. 35-42. DOI: https://doi.org/10.1109/NCAEA54556.2021.9690507

KENDZIERSKYJ, Stefan; JAHANKHANI, Hamid; JAMAL, Arshad; HUSSEIN, Osama Akram Amin Metwally; YANG, Longzhi. The role of blockchain with a cybersecurity maturity model in the governance of higher education supply chains. AI, Blockchain and Self-Sovereign Identity in Higher Education. Cham: Springer Nature, 2023, p. 1-35. DOI: https://doi.org/10.1007/978-3-031-33627-0_1

KIRON, David; FERGUSON, Renee Boucher; PRENTICE, Pamela Kirk. From value to vision: reimagining the possible with data analytics. MIT Sloan Management Review, v. 54, n. 3, p. 1, 2013.

KUCIŃSKA-LANDWÓJTOWICZ, Aneta; Czabak-Górska, Izabela Dagmara; Domingues, Pedro; Sampaio, Paulo; Carvalho, Carolina Ferradaz de. Organizational maturity models: the leading research fields and opportunities for further studies. International Journal of Quality & Reliability Management, v. 41, n. 1, 2023, p. 60-83. DOI: https://doi.org/10.1108/IJQRM-12-2022-0360

KUGLER, José Luiz Carlos. Competência Analítica. São Paulo: Saraiva, 2013.

KUMAR, Sowmya Ramesh. Scaling data science: challenges in enterprise adoption. Journal of Artificial Intelligence & Cloud Computing, v. 1, n. 3, 2022, p. 1-3. DOI: https://doi.org/10.47363/JAICC/2022(1)212

LASRI, Imane; RIADSOLH, Anouar; ELBELKACEMI, Mourad. Real-time twitter sentiment analysis for moroccan universities using machine learning and big data technologies. International Journal of Emerging Technologies in Learning, v. 18, n. 5, 2023, p. 42-61. DOI: https://doi.org/10.3991/ijet.v18i05.35959

LAUAR, Vanessa Rodrigues; GONÇALVES, Carlos Aalberto; ASSUNÇÃO, Lorrane Stéfany Ribeiro. Intuition as value creation cognitive engine on the entrepreneurial innovation: an integrative review. International Journal of Scientific Management and Tourism, v. 9, n. 6, 2023, p. 3346–3357. DOI: https://doi.org/10.55905/ijsmtv9n6-007

MANDINACH, Ellen B. A perfect time for data use: using data-driven decision making to inform practice. Educational Psychologist, v. 47, n. 2, 2012, p. 71-85. DOI: https://doi.org/10.1080/00461520.2012.667064

MARCONI, Marina Andrade; LAKATOS, Eva Maria. Fundamentos de metodologia científica. São Paulo: Atlas, 2017.

MARSHALL, Stephen. Crossing the ditch: applying the e-learning maturity model to Australian institutions. ASCILITE CONFERENCE, 26, 2009. Proceedings..., 2009, p. 6-9. Disponível em: https://www.ascilite.org/conferences/auckland09/procs/marshall.pdf. Acesso em: 5 jan. 2024.

MCAFEE, Andrew; BRYNJOLFSSON, Erik. Big data: the management revolution. Harvard Business Review, v. 90, n. 10, 2012, p. 60-68.

METTLER, Tobias; ROHNER, Peter. Situational maturity models as instrumental artifacts for organizational design. INTERNATIONAL CONFERENCE ON DESIGN SCIENCE RESEARCH IN INFORMATION SYSTEMS AND TECHNOLOGY, 4, 2009. Proceedings…, 2009, p. 1-9. DOI: https://doi.org/10.1145/1555619.1555649

MONTEIRO, Erasmo Le; MACIEL, Rita Suzana Pitangueira. Maturity models architecture: a large systematic mapping. Brazilian Journal of Information Systems, v. 13, n. 2, 2020, p. 110-140. DOI: https://doi.org/10.5753/isys.2020.761

MUNEEB, Dilnaz; ASLAM, Haris; ABDALLA, Shahira; HAYAT, Naeem; AHMAD, Syed Zamberi. Catalyzing resource recombination in higher education through potential building and value realizing capabilities. Journal of Asia Business Studies, v. 17, n. 2, 2023, p. 385-403. DOI: https://doi.org/10.1108/JABS-10-2021-0442

NAHOTKO, Marek; ZYCH, Magdalena; JANUSZKO-SZAKIEL, Aneta; JASKOWSKA, Malgorzata. Big data-driven investigation into the maturity of library research data services. The Journal of Academic Librarianship, v. 49, n. 1, 2023, p. 102646. DOI: https://doi.org/10.1016/j.acalib.2022.102646

NORMANN-ANDERSEN, Kim; LEE, Jungwoo; METTLER, Tobias; MOON, M. Jae. Ten Misunderstandings about Maturity Models. ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, 21, 2020. Proceedings..., 2020, p. 261-266. DOI: https://doi.org/10.1145/3396956.3396980

OTTO, Lerna; BLEY, Katja; HARST, Lorenz. Designing and evaluating prescriptive maturity models: A design science-oriented approach. CONFERENCE ON BUSINESS INFORMATICS, 22, 2020. Proceedings…, IEEE, 2020, p. 40-47. DOI: https://doi.org/10.1109/CBI49978.2020.10056

PAŽUR-ANICIC, Katarina; REĐEP, Nina Begicevic; KADOIĆ, Nikola. Towards LA adoption maturity framework. JUBILEE INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY, 45, 2022. Proceedings…, IEEE, 2022, p. 711-716. DOI: https://doi.org/10.23919/MIPRO55190.2022.9803750

PEFFERS, Ken; TUUNANEN, Tuure; ROTHENBERGER; Marcus A.; CHATTERJEE, S. A design science research methodology for information systems research. Journal of Management Information Systems, v. 24, n. 3, 2007, p. 45-77. DOI: https://doi.org/10.2753/MIS0742-1222240302

PEREIRA, Rui Humberto; CARVALHO, João Vidal de; ROCHA, Álvaro. Architecture of a maturity model for information systems in higher education institutions: multiple case study for dimensions identification. Computational and Mathematical Organization Theory, v. 29, n. 4, 2023, p. 526-541. DOI: https://doi.org/10.1007/s10588-021-09342-z

PETCH, Jim; CALVERLEY, Gayle; DEXTER, Hilary; CAPPELLI, Tim. Piloting a process maturity model as an eLearning benchmarking method. EUROPEAN CONFERENCE ON ELEARNING, 5, 2007. Proceedings ..., p. 273. Disponível em: https://files.eric.ed.gov/fulltext/EJ1098862.pdf. Acesso em: 5 jan. 2024.

PÖPPELBUß, Jens; RÖGLINGER, Maximilan. What makes a useful maturity model? A framework of general design principles for maturity models and its demonstration in business process management. EUROPEAN CONFERENCE ON INFORMATION SYSTEMS, v. 28, 2011. Proceedings. Disponível em: https://aisel.aisnet.org/ecis2011/28. Acesso em: 27 jan. 2024.

PROVOST, Foster; FAWCETT, Tom. Data science and its relationship to big data and data-driven decision making. Big Data, v. 1, n. 1, 2013, p. 51-59. DOI: https://doi.org/10.1089/big.2013.1508

PUGNA, Irina Bogdana; DUȚESCU, Adriana; STĂNILĂ, Oana Georgiana. Corporate attitudes towards big data and its impact on performance management: a qualitative study. Sustainability, v. 11, n. 3, 2019, p. 684. DOI: https://doi.org/10.3390/su11030684

REIS, Thalita Laua; MATHIAS, Maria Augusta Siqueira; OLIVEIRA, Otávio José. Maturity models: identifying the state-of-the-art and the scientific gaps from a bibliometric study. Scientometrics, v. 110, 2017, p. 643-672. DOI: https://doi.org/10.1007/s11192-016-2182-0

SDIRI, Bilel; RIGAUD, Lionel; JEMMALI, Rym; ABDELHEDI, Fatma. The difficult path to become data-driven. SN Computer Science, v. 4, n. 4, 2023, p. 385. DOI: https://doi.org/10.1007/s42979-023-01789-y

STEWART, Christopher Lee; DEWAN, M. Ali Akber. A systemic mapping study of business intelligence maturity models for higher education institutions. Computers, v. 11, n. 11, 2022, p. 153. DOI: https://doi.org/10.3390/computers11110153

STOJANOV, Ana; DANIEL, Ben Kei. A decade of research into the application of big data and analytics in higher education: A systematic review of the literature. Education and Information Technologies, v. 29, n. 5, 2023, p. 1-25. DOI: https://doi.org/10.1007/s10639-023-12033-8

SVENSON, Frithiof; PIETRZAK, Piotr; LAUNER, Markus A. Different types of intuition at the workplace: an integrative review. Business: Theory and Practice, v. 24, n. 2, 2023. DOI: https://doi.org/10.3846/btp.2023.16733

TAO, Fei; QI, Qinglin; LIU, Ang; KUSIAK, Andrew. Data-driven smart manufacturing. Journal of Manufacturing Systems, v. 48, 2018, p. 157-169. DOI: https://doi.org/10.1016/j.jmsy.2018.01.006

TENG, Yusi; ZHANG, Jie; SUN, Ting. Data‐driven decision‐making model based on artificial intelligence in higher education system of colleges and universities. Expert Systems, v. 40, n. 4, 2023, p. e12820. DOI: https://doi.org/10.1111/exsy.12820

TIMOFEEVA, Rimma A; KIRKOROVA, Lyudmila A. On Big Data, Management Systems and Corporate Culture. INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE STRATEGY OF DEVELOPMENT OF REGIONAL ECOSYSTEMS EDUCATION-SCIENCE-INDUSTRY, Proceedings…, 2021. DOI: https://doi.org/10.2991/aebmr.k.220208.067

TROTTA, Dennis; GARENGO, Patrizia. Assessing industry 4.0 maturity: An essential scale for SMEs. INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY AND MANAGEMENT, 8, Proceedings…, IEEE, 2019, p. 69-74. DOI: https://doi.org/10.1109/ICITM.2019.8710716

UJKANI, Berat; MINKOVSKA, Daniela; STOYANOVA, Lyudmila Yordanova. Application of logistic regression technique for predicting student dropout. INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRONICS, 31, Proceedings…, IEEE, 2022. p. 1-4. DOI: https://doi.org/10.1109/ET55967.2022.9920280

VERHOEF, Peter C.; KOOGE, Edwin; WALK, Natasha. Creating value with big data analytics: making smarter marketing decisions. Londres: Routledge, 2016. DOI: https://doi.org/10.4324/9781315734750

VIDGEN, Richard; SHAW, Sarah; GRANT, David B. Management challenges in creating value from business analytics. European Journal of Operational Research, v. 261, n. 2, p. 626-639, 2017. DOI: https://doi.org/10.1016/j.ejor.2017.02.023

WAHEED, Hajra; HASSAN, Saeed-Ul; ALJOHANI, Naif; NAWAZ, Raheel. Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, v. 104, 2020, p. 106189. DOI: https://doi.org/10.1016/j.chb.2019.106189

YAĞCI, Mustafa. Educational data mining: prediction of students' academic performance using machine learning algorithms. Smart Learning Environments, v. 9, n. 1, 2022, p. 11. DOI: https://doi.org/10.1186/s40561-022-00192-z

Downloads

Publicado

15-03-2025

Como Citar

Andrade, L. S. de, Correia, M. da S., Prado, H. A. do, & Ferneda, E. (2025). Maturidade em orientação a dados: proposta de boas práticas para instituições de ensino superior. Revista De Gestão E Avaliação Educacional, e89778. https://doi.org/10.5902/2318133889778