Laboratory biochemical markers of cardiac injury by COVID-19: an integrative review.

Autores

DOI:

https://doi.org/10.5902/2236583463082

Palavras-chave:

Biomarkers, Cardiac tissue, Comorbidities, COVID-19, Myocardial injury, SARS-CoV-2.

Resumo

The damaging effects of Sars-CoV-2 on cardiac tissue may be intensified with the presence of cardiocirculatory pathologies. The use of clinical biomarkers has grown, in order to monitor this cardiotoxicity early. In this sense, this study aimed to investigate, through an integrative review, the main biomarkers of cardiac injury associated with comorbidities in patients with COVID-19. A systematic bibliographic search was conducted on July 26, 2020, in the Scopus database. Of the total of 669 publications purchased, only 40 articles were eligible for this review. From the content of these publications, 16 systemic cardiac and inflammatory biomarkers that are part of the clinical findings of critically ill patients with COVID-19 were identified. Most of these patients were male, had a mean age of 63 years, and pre-existing comorbidities, such as were hypertension, diabetes mellitus, coronary artery disease, cerebrovascular disease, and chronic obstructive pulmonary disease. Cardiac injuries in patients infected with COVID-19 are related to the increase in cardiac and systemic biomarkers observed in most of these individuals. Finally, it is expected to increase physicians' awareness of biochemical markers of non-invasive cardiac injury, for diagnosis and prognosis, of unusual extrapulmonary pathophysiological presentations during infection by COVID-19.

Downloads

Não há dados estatísticos.

Biografia do Autor

Wagner Rodrigues de Assis Soares, Universidade Estadual do Sudoeste da Bahia

Atualmente é pesquisador e professor Adjunto de Farmacologia basica e Processos Gerais de Patologia no Departamento de Saúde II da Universidade Estadual do Sudoeste da Bahia para cursos de graduação da área de Saúde.

Máyra Beatriz Alves Andrade, Universidade Estadual do Sudoeste da Bahia

Graduanda do curso de Medicina

Departamento de Saúde II, Campus: Jequié, Bahia

Liga Academica de  Cardiologia - LAC

Anne Araújo de Jesus Oliveira, Universidade Estadual do Sudoeste da Bahia

Graduanda do curso de Medicina

Departamento de Saúde II, Campus: Jequié, Bahia

Liga Academica de  Cardiologia - LAC

Pedro Gabriel Santos Brito, Universidade Estadual do Sudoeste da Bahia

Graduando do curso de Medicina

Departamento de Saúde II, Campus: Jequié, Bahia

Liga Academica de  Cardiologia - LAC

Gabriel Novaes Miranda, Universidade Estadual do Sudoeste da Bahia

Graduando do curso de Medicina

Departamento de Saúde II, Campus: Jequié, Bahia

Liga Academica de  Cardiologia - LAC

Diego Rocha Cardoso, Universidade Estadual do Sudoeste da Bahia

Graduando do curso de Medicina

Departamento de Saúde II, Campus: Jequié, Bahia

Liga Academica de  Cardiologia - LAC

Naiane Oliveira Santos, Universidade Estadual do Sudoeste da Bahia

Doutoranda do Programa de Genetica e Biologia Molecular

Departamento de Ciências Biologicas

Universidade Estadual de Santa Cruz,  Ilhéus, Bahia

Bruno Silva Andrade, Universidade Estadual do Sudoeste da Bahia

Doutor em Biotecnologia, Universidade Estadual de Feira de Santana, Bahia

Departamento de Ciências Biologicas, Campus Jequié, Bahia

Laboratório de Bioinformatica e Química Computacional

Referências

Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol. 2020; 92(4):401-402. https://doi.org/10.1002/jmv.25678

Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan, B. et al: A promising cure for the global panic. Sci Total Environ. 2020; 725: 1-18. https://doi.org/10.1016/j.scitotenv.2020.138277.

Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA,

et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. 2003; JAMA 289: 2801–2809. https://doi.org/10.1001/jama.289.21. JOC30885.

Badawi A & Ryoo SG. Prevalence of comorbidities in the middle east respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016; 49:129–133. https://doi.org/10.1016/j.ijid.2016.06.015.

Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 811-818. https://doi.org/10.1001/jamacardio.2020.1017

Li B, Yang J, Zhao F, Zhi L, Wang X , Liu L, et al.. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020a 109: 531–538. https://doi.org/10.1007/s00392-020-01626-9.

Shi S, Qin M, Cai Y, Liu T, Shen B, Yang F, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020; 41: 2070–2079. https://doi.org/10.1093/eurheartj/ehaa408.

Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003; 361:1319–1325. https://doi.org/10.1016/s0140-6736(03)13077-2.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang j, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020, 323: 1061–1069. https://doi.org/10.1001/jama.2020.1585.

Tavazzi G, Pellegrini C, Maurelli M, Belliato M, Sciutti F, Bottazzi A, et al. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. Eur J Heart Fail. 2020; 22(5): 911-915. https://doi.org/10.1002/ejhf.1828.

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46: 846–848. https://doi.org/10.1007/s00134-020-05991-x.

Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020; 14: 1–14. https://doi.org/10.1177/1753466620937175.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3

Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog Cardiovasc Dis. 2020; 63(3):390-391. https://doi.org/10.1016/j.pcad.2020.03.001.

Stillwell SB, Fineout-Overholt E, Melnyk BM, Williamson KM. Evidence-based practice, step by step: asking the clinical question: a key step in evidence-based practice. Am J Nurs. 2010; 110(3): 58-61. https://doi.org/10.1097/01.NAJ.0000368959.11129.79.

Cardinale D, Sandri MT. Role of Biomarkers in Chemotherapy-Induced Cardiotoxicity. Prog Cardiovasc Dis. 2010; 53: 121–129. https://doi.org/10.1016/j.pcad.2010.04.002.

Reagan WJ. Troponin as a Biomarker of Cardiac Toxicity: Past, Present, and Future. Toxicol Pathol. 2010; 38: 1134-1137. https://doi.org/10.1177/0192623310382438.

O’Brien, PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicol. 2008; 245: 206–18. https://doi.org/10.1016 / j.tox.2007.12.006.

Chen Q, Lili XU, Dai Y, Ling Y, Mao J, Qian J, et al. Cardiovascular manifestations in severe and critical patients with COVID‐19. Clin Cardiol, 2020a; 43(7): 796–802. https://doi.org/10.1002/clc.23384.

Chibane S, Gibeau G, Poulin F, Tessier P, Goulet M, Carrier M, et al. Hyperacute multi-organ thromboembolic storm in COVID-19: a case report. J Thromb Thrombolysis. 2020; 00: 1–4. https://doi.org/10.1007/s11239-020-02173w.

Khatri A, Wallach F. Coronavirus disease 2019 (Covid-19) presenting as purulent fulminant myopericarditis and cardiac tamponade: A case report and literature review. Heart Lung. 2020; 000: p.1-6. https://doi.org/10.1016/j.hrtlng.2020.06.003.

Alpert JS, Thygesen K, Antman, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000; 36: 959-69. https://doi.org/10.1016/s0735-1097(00)00804-4.

Chen X, Yan L, Fei Y, Zhang C. Laboratory abnormalities and risk factors associated with in hospital death in patients with severe COVID-19. J Clin Lab Anal. 2020b; 00: 1-7. https://doi.org/10.1002/jcla.23467.

Akpinar EE, Hoşgün D, Akpinar S, Ateş C, Baha A, Gülensoy SE. Os níveis de pró-peptídeo natriurético cerebral N-terminal determinam o prognóstico de pneumonia adquirida na comunidade? J Bras Pneumol. 2019; 45(4): 1-6. https://doi.org/10.1590/1806-3713/e20180417.

Vivekanandan S, Swaminathan R. Clinically effective CK-MB reporting: How to do it? J Postgrad Med. 2010; 56(3): 226. https://doi.org/10.4103/0022-3859.68646.

Deng P, Ke Z, Ying B, Qiao B, Yuan L. The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19. Clin Chim Acta. 2020; 510:186-190. https://doi.org/10.1016/j.cca.2020.07.018.

Han H, Xie L, Liu R, Yang J, Liu F, Wu K. Analysis of heart injury laboratory parameters in 273 COVID‐19 patients in one hospital in Wuhan, China. J Med Virol. 2020; 92(7): 819-823. https://doi.org/10.1002/jmv.25809.

Van den Heuvel FMA, Vos JL, Koop Y, Van Dijk APJ, Duijnhouwer AL, de Mast Q, et al. Cardiac function in relation to myocardial injury in hospitalized patients with COVID-19. Neth Heart J. 2020; 28(7-8):410-417. https://doi.org/10.1007/s12471-020-01458-2.

Gao L, Jiang D, Wen X, Cheng X, Sun M, He B, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020; 21: 83. https://doi.org/10.1186/s12931-020-01352-w.

Pranata R, Huang I, Lukito AA, Raharjo SB. Elevated N-terminal pro-brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis. Postgrad Med J. 2020; 96(1137): 387-391. https://doi.org/10.1136/postgradmedj-2020-137884.

Li L, Zhou Q, Xu J. Changes of Laboratory Cardiac Markers and Mechanisms of Cardiac Injury in Coronavirus Disease 2019. Biomed Res Int. 2020b; 00:1-7. https://doi.org/10.1155/2020/7413673.

Pöyhönen P, Kylmälä M, Vesterinen P, Kivistö S, Holmström M, Lauerma K et al. Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural myocardial infarction – a prospective CMR study. BMC Cardiovasc Disord. 2018; 18(1):27. https://doi.org/10.1186/s12872-018-0767-7.

Li J-W, Han T-W, Woodward M, Anderson CS, Zhou H, Chen Y-D et al. The impact of 2019 novel coronavirus on heart injury: A Systematic review and Meta-analysis. Prog Cardiovasc Dis. 2020c; 63: 518-524. https://doi.org/10.1016/j.pcad.2020.04.008.

Koperdanova M, Cullis JO. Interpreting raised serum ferritin levels. BMJ, 2015; 351:h3692. https://doi.org/10.1136/bmj.h3692.

Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018; 9:754. https://doi.org/10.3389/fimmu.2018.00754.

Fan H, Zhang L, Huang B, Zhu M, Zhou Y, Zhang H, et al. Cardiac injuries in patients with coronavirus disease 2019: Not to be ignored. Int J Infect Dis. 2020; 96: 294-297. https://doi.org/10.1016/j.ijid.2020.05.024.

Yu S, Xu L, Qi Q, Geng Y-W, Chen H, Meng Z-Q, et al. Serum lactate dehydrogenase predicts prognosis and correlates with systemic inflammatory response in patients with advanced pancreatic cancer after gemcitabine-based chemotherapy. Sci Rep. 2017; 7:45194. https://doi.org/10.1038/srep45194.

Drent M, Cobben NA, Henderson RF, Wouters EF, Dieijen-Visser M. Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation. Eur Respir J. 1996; 9(8): 1736-1742. https://doi.org/10.1183/09031936.96.09081736.

Wei F-J, Huang Y-F, Xiong Y-T, Liu Qi, Chen H, Wang H. et al. Acute myocardial injury is common in patients with covid-19 and impairs their prognosis. Heart. 2020; 106(15):1154–1159. https://doi.org/10.1136/heartjnl-2020-317007

Su M, Wang Y, Peng J, Wu MJ, Deng W, Yang YS. Elevated cardiac biomarkers are associated with increased mortality for inpatients with COVID-19: A retrospective case-control study. J Clin Anesth. 2020; 65: 109894. https://doi.org/10.1016/j.jclinane.2020.109894

Michel L, Rassaf T, Totzeck M.Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J Thorac Dis 10. 2018; (Suppl 35): S4282-S4295. https://doi.org/10.21037/jtd.2018.08.15.

Bounds EJ, Kok SJ. Dimer D. In: StatPearls [updated March 14, 2019].In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan Available from: https://www.ncbi.nlm.nih.gov/books/NBK431064/ [accessed 26 August 2020].

Favresse J, Lippi G, Roy PM, Chatelain B, jacqmin H, Cate HT, et al. D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Crit Rev Clin Lab Sci. 2018; 55(8): 548-577. https://doi.org/10.1080/10408363.2018.1529734

Wu J, Stefaniak J, Hafner C, Schramel JP, Kaun C, Wojta J, et al. Intermittent hypoxia causes inflammation and injury to human adult cardiac myocytes. Anesth Analg. 2016; 122(2):373–380. https://doi.org/10.1213/ANE.0000000000001048

Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. https://doi.org/10.1111/jth.14768

Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39(5): 529–539. https://doi.org/10.1007/s00281-017-0629-x.

Henry BM, Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020; 58(7): 1021-1028. https://doi.org/10.1515/cclm-2020-0369

Wong CK, Lam CWK, Wu AKL, Ip WK, Lee NLS, Chan IHS, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004; 136(1):95-103. https://doi.org/10.1111/j.1365-2249.2004.02415.x.

Nobre V, Borges I. Núcleo Interdisciplinar de Investigação em Medicina Intensiva (NIIMI). Prognostic value of procalcitonin in hospitalized patients with lower respiratory tract infections. Rev Bras Ter Intensiva. 2016; 28(2): 179-189. https://doi.org/10.5935/0103-507X.20160019

Bonnet M, Craighero F, Harbaoui B. Acute Myocarditis with Ventricular Noncompaction in a COVID-19 Patient. JACC Heart Fail. 2020; 8(7): 599-600. https://doi.org/10.1016/j.jchf.2020.05.004

Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients—A systematic review. J Card Surg. 2020; 35(8): 1988–2008. https://doi.org/10.1111/jocs.14808

Trojahn MM, Barilli SLS, Bernardes DS, Pedraza LL, Aliti GB, Rabelo-Silva ER. Níveis do peptídeo natriurético tipo B e acurácia diagnóstica: volume de líquidos excessivo. Rev Gaúcha Enferm. 2020; 41(esp): e20190095

https://doi.org/10.1590/1983-1447.2020.20190095

Downloads

Publicado

2021-03-23

Como Citar

Soares, W. R. de A., Andrade, M. B. A., Oliveira, A. A. de J., Brito, P. G. S., Miranda, G. N., Cardoso, D. R., Santos, N. O., & Andrade, B. S. (2021). Laboratory biochemical markers of cardiac injury by COVID-19: an integrative review. Saúde (Santa Maria), 47(1). https://doi.org/10.5902/2236583463082

Edição

Seção

Artigos de Revisão