BIOPROSPECÇÃO DE PEPTÍDEOS ANTIMICROBIANOS EM LARVAS DE CALLIPHORIDAE (DIPTERA): UMA REVISÃO SISTEMÁTICA SOBRE METODOLOGIAS DE EXTRAÇÃO, PURIFICAÇÃO E DETECÇÃO

Autores

DOI:

https://doi.org/10.5902/2236583449767

Palavras-chave:

Defensinas. Peptídeos Catiônicos Antimicrobianos. Espectrometria de Massas por Ionização por Electrospray.

Resumo

Os insetos apresentam a maior biodiversidade entre a classe Animal e são fontes ricas de produtos biotecnológicos. Espécies da família Calliphoridae (Diptera) apresentam hábitos necrófagos durante a fase larval, assim são expostas a diferentes microrganismos, produzindo peptídeos antimicrobianos (AMPs) como sistema de defesa. O objetivo deste trabalho foi realizar um levantamento bibliográfico dos principais peptídeos antimicrobianos identificados em Calliphoridae (Diptera), fornecendo dados para a bioprospecção de novos compostos. A revisão bibliográfica foi realizada nas plataformas: Google Acadêmico e SciFinder e foram selecionados 56 artigos para o desenvolvimento deste trabalho. Os AMPs possuem atividade contra amplo espectro de bactérias gram-positivas e gram-negativas, por isso apresentam grande interesse para tratamentos de feridas (e.g.: Terapia Larval) e bioprospecção de novos antibióticos. Estas moléculas são obtidas a partir do produto de excreção e secreção das larvas de Calliphoridae e sua ação tem como alvo primário a membrana celular das bactérias, devido interações eletroestáticas e interações de van der Waals com a membrana lipídica. A utilização de técnicas de separação acopladas com espectrometria de massas permitiu a identificação e caracterização de peptídeos da classe Defensina em diferentes espécies de califorídeos. A bioprospecção de novas moléculas antimicrobianas em moscas é uma área promissora dentro da biotecnologia, devido ao aumento do número de bactérias resistentes aos antibióticos atuais.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ronaldo Roberto Tait Caleffe, Universidade Estadual de Maringá

Biotecnólogo, Mestre em Biotecnologia Ambiental e Doutorando em Biotecnologia Ambiental.

Stefany Rodrigues de Oliveira, Universidade Estadual de Maringá

Biotecnóloga, Mestra em Biotecnologia Ambiental e Doutoranda em Biotecnologia Ambiental.

Julio Cesar Polonio, Universidade Estadual de Maringá

Biotecnólogo, Doutor em Biotecnologia Ambiental.

Bruno Vinicius Daquila, Universidade Estadual de Maringá

Biológo, Mestre em Biotecnologia Ambiental e Doutorando em Biotecnologia Ambiental.

Maria Claudia Colla Ruvolo-Takasusuki, Universidade Estadual de Maringá

Biológa, Doutora em Genética e Evolução

João Alencar Pamphile, Universidade Estadual de Maringá

Biológo, Doutor em Genética e Melhoramento de Plantas

Helio Conte, Universidade Estadual de Maringá

Biológo, Doutor em Ciências Biológicas

Eduardo Cesar Meurer, Universidade Federal do Paraná

Quimíco, Doutor em Quimíca

Referências

Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evid Based Complement Alternat Med. 2014; 592419

Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M. Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera:Calliphoridae). J Med Entomol. 2001;38:161–166

Simmons SW. A bactericidal principle in excretions of surgical maggots which destroys important aetiological agents of pyogenic infections. J Bacteriol. 1935;30: 253–267

Pavillard ER, Wright EA. An antibiotic from maggots. Nature. 1957;180:916–917

Arora S, Sing LC, Baptista C. Antibacterial activity of Lucilia cuprina maggot extracts and its extraction techniques. Int J Integ Biol. 2010;9(1):43-48

Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterization of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Micro Infec. 2004;6:1297–1304. DOI: 10.1016/j.micinf.2004.08.011

Masiero FS, Aquino MFK, Nassu MP, Pereira DIB, Leite DS, Thyssen PJ. First Record of Larval Secretions of Cochliomyia macellaria (Fabricius, 1775) (Diptera: Calliphoridae) Inhibiting the Growth of Staphylococcus aureus and Pseudomonas aeruginosa. Neotrop Entomol. 2016. DOI: 10.1007/s13744-016-0444-4

Ratcliffe NA, Vieira CS, Mendon PM, Caetano RL, Queiroz MMC, Garcia ES, et al. Detection and preliminary physico-chemical properties of antimicrobial components in the native excretions/secretions of three species of Chrysomya (Diptera, Calliphoridae) in Brazil. Acta Trop. 2015;147:6–11

Andersen AS, Joergensen B, Bjarnsholt T, Johansen H, Karlsmark T, Givskov M, et al. Qourum-sensing-regulated virulence factors in Peudomonas aerugionosa are toxic to Lucilia sericata maggots. Microbiol. 2010;156:400-407. DOI: 10.1099/mic.0.032730-0.

Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol. 2010;24:375–381. DOI: 10.1111/j.1365-2915.2010.00902.x

Čeřovský V, Zdarek J, Fucik V, Monincová L, Voburka Z, Bém R. Lucifensin, the long-shought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67:455-466

Valachová I, Bohová J, Pálošová Z, Takáč P, Kozánek M, Maitán J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell Tissue Res. 2013;353:165–171. DOI: 10.1007/s00441-013-1626-6

Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11:217–221

Cazander G, Kiril MD, van Veen EB, Bouwman LH, Bernards AT, Jukema GN. The Influence of Maggot Excretions on PAO1 Biofilm Formation on Different Biomaterials. Clin Orthop Relat Res. 2009;467:536–545. DOI: 10.1007/s11999-008-0555-2

van der Plas MJ, Van der Does AM, Baldry M, Dogterom-Ballering HC, Van Gulpen C, van Dissel JT, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9(4):507-14.

van der Plas MJA, Dambrot C, Dogterom-Ballering HCM, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother. 2010;65:917–923. DOI: 10.1093/jac/dkq042. 2010.

Valachová I, Bohová J, Kozánek M, Takáč P, Maitán J. Lucilia sericata medicinal maggots: a new source of antimicrobial compounds. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). 2013.

Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10:461. DOI: 10.3390/toxins10110461

Carvalho CJB, Mello-Patiu CA. Key to the adults of the most common forensic species of Diptera in South America. Reva Bras Entomol. 2008;52(3):390-406

Awad H, Khamis MM, El-Aneed A. Mass Spectrometry, Review of the Basics: Ionization. Appl Spectrosc Rev. 2014;50(2):158-175. DOI: 10.1080/05704928.2014.954046.

Chapman AD. Numbers of Living Species in Australia and the World, 2 ed. Australian Government, Department of the Environment, Water, Heritage and the Arts. 2009

Raven PH, Yeates DK. Australian biodiversity: threats for the present, opportunities for the future. 2007.

Baer WS. The treatment of chronic osteomyelitis with the maggot (larva of the blow fly). J Bone Joint Surg Am. 1931;13:438–475

Wang T, Wang W, Li F, Chen Y, Jiang D, Chen Y, et al. Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a-TSP-1 axis. Diabetes Res Clin Pract. 2020;165. DOI: 108140. 2020. 10.1016/j.diabres.2020.208140.

Linger RJ, Belikoff EJ, Yan Y, Li F, Wantuch HA, Fitzsimons HL, et al. Towards next generation maggot debridement therapy: transgenic Lucilia sericata larvae that produce and secrete a human growth factor. BMC Biotechnol. 2016;16:30. DOI: 10.1186/s12896-016-0263-z

Stadler F. The maggot therapy supply chain: a review of the literature and practice. Med Vet Entomol. 2020;34:1-9. DOI: 10.1111/mve.12397

Fleischmann W, Grassberger M, Sherman R. Maggot Therapy: A Handbook of Maggot- Assisted Wound Healing. Thieme Verlag Stuttgart. 2004.

Hobson RP. On an enzyme from blow-fly larvae (Lucilia sericata) which digests collagen in alkaline solution. Biochem J. 1931;25:1458–1463

Valachova I, Majtan T, Takac P, Majtan J. Identification and characterization of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed. 2014;12(3):171-177. DOI: 10.1016/j.jab.2014.01.001

Caleffe RRT, Oliveira SR, Gigliolli AAS, Ruvolo-Takasusuki MC, Conte H. Bioprospection of immature salivary glands of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). Micron. 2018;112:55-62. DOI: 10.1016/j.micron.2018.06.007.

Grassberger M, Sherman RA, Gileve O, Kim C, Mumcuoglu KY. Biotherapy - History, Principles and Practice. Springer. 2013.

Yakovlev AY, Nesin AP, Simonenko NP, Gordyal NA, Tulin DV, Kruglikoval AA, et al. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae In Vitro. Cell Dev Biol Animal. 2016. DOI: 10.1007/s11626-016-0078-1.

Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept. 2013;675391. DOI: 10.1155/2013/675391

Hultmark D, Engström A, Bennich H, Kapur R, Boman HG. Insect immunity. Isolation and structure of cecropin D and four minor antibacterial components from cecropia pupae. Eur J Biochem. 1982;127:207–217

van Hofsten P, Faye I, Kockum K, Lee JY, Xanthopoulos KG, Boman IA. Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc Nat Acad Sci USA. 1985;82:2240–2243

Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrobiol Chemother. 1996;37:1077–1089

Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1529–1539

Fu H, Björstad A, Dahlgren C, Bylund J. A bacterial cecropin-A peptide with a stabilized _-helical structure possess an increased killing capacity but no proinflammatory activity. Inflammation. 2004;28:337–343

Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life. 2016;68:652–662

Durell SR, Raghunathan G, Guy HR. Modeling the ion channel structure of cecropin. Biophys J. 1992;63:1623–1631

Srisailam S, Kumar TKS, Arunkumar AI, Leung KW, Yu C, Chen HM. Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. Eur J Biochem. 2001;268:4278–4284

Chalk R, Townson H, Ham PJ. Brugia pahangi: The effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp Parasitol. 1995;80:401–406

Andrä J, Berninghausen O, Leippe M. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol. 2001;189:169–173

Guo C, Huang Y, Zheng H, Tang L, He J, Xiao L, et al. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp Ther Med. 2012;4:1063–1068

Park SI, An HS, Chang BS, Yoe SM. Expression, cDNA cloning, and characterization of the antibacterial peptide cecropin D from Agrius convolvuli. Anim Cells Syst. 2013;17:23–30

Hou ZP, Wang WJ, Liu ZQ, Liu G, Souffrant WB, Yin YL. Effect of lactoferricin B and cecropin P1 against enterotoxigenic Escherichia coli in vitro. J Food Agric Environ. 2011;9:271–274

Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, et al. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. J Pept Sci. 2016;22:214–221.

Téllez GA, Castaño-Osorio JC. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli. Protein Expr Purif. 2014;100:48–53

Lu X, Shen J, Jin X, Ma Y, Huang Y, Mei H, et al. Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli. Appl Microbiol Biotechnol. 2012;95:939–945

Carlsson A, Engström P, Palva ET, Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun. 1991;59:3040–3045

Cudic M, Bulet P, Hoffmann R, Craik DJ, Otvos LJ. Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects. Eur J Biochem. 1999;266:549–558

Keppi E, Pugsley AP, Lambert J, Wicker C, Dimarcq JL, Hoffmann JA, et al Mode of action of diptericin A, a bactericidal peptide induced in the hemolymph of Phormia terranovae larvae. Insect Biochem Physiol. 1989;10:229–239

McManus AM, Otvos LJ, Hoffmann R, Craik DJ. Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: Effects of glycosylation on solution conformation. Biochemistry. 1999;38:705–714

Lele DS, Talat S, Kumari S, Srivastava N, Kaur KJ. Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a Proline rich antimicrobial peptide. Eur J Med Chem. 2015;92:637–647

Bulet P, Urge L, Ohresser S, Hetru C, Otvos LJ. Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem. 1996;238:64–69

Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem. 1995;233:694–700

Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, et al. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J. 1994;300:567–575.

Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos LJ. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001;40:3016–3026

Boxell A, Lee SH, Jefferies R, Watt P, Hopkins R, Reid S, et al. Pyrrhocoricin as a potential drug delivery vehicle for Cryptosporidium parvum. Exp Parasitol. 2008;119:301–303

Díaz-Roa A, Espinoza-Culupú A, Torres-García O, Borges MM, Avino IN, Alves FL, et al. Antimicrobial Peptide Isolated from Sarconesiopsis magellanica Excretions and Secretions. Molecules. 2019;24:2077. DOI: 10.3390/molecules24112077

Pöppel AK, Koch A, Kogel KH, Vogel H, Kollewe C, Wiesner J, et al. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem. 2014;395(6):649–656. DOI: 10.1515/hsz-2013-0263

Sherman RA, Tran JMT. A simple, sterile food source for rearing the larvae of Lucilia sericata (Diptera: Calliphoridae). Med Vet Entomol. 1995;9:393-398

Mackerras MJ, Freney MR. Observations on the nutrition of maggots of Australian blowflies. J Exp Biol. 1932; 10:237-246

Thyssen PJ, Nassu MP, Nitsche MJT, Leite DS. Sterilization of immature blowflies (Calliphoridae) for use in larval therapy. J Med Med Sci. 2013;4(10):405-409. DOI: 10.14303/jmms.2013.142.

Dellavecchia DL, Filho RGS, Aguiar VM. Sterilization of Chrysomya putoria (Insecta: Diptera: Calliphoridae) Eggs for Use in Biotherapy. J Insect Sci. 2014;14:160. DOI: 10.1093/jisesa/ieu022

El Shazely B, Veverka V, Fûčk V, Voburka Z, Žďárek J, Čeřovský V. Lucifensin II, a Defensin of Medicinal Maggots of the Blowfly Lucilia cuprina (Diptera: Calliphoridae). J Med Entomol. 2013;50(3):571-578

Fen JB, Mann M, Menga CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64-71. DOI: 10.1126/science.2675315

Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int J Anal Chem. 2012;282574:40. DOI: 10.1155/2012/282574

Díaz-Roa A, Patarroyo MA, Bello FJ, Silva PI. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol. 2018;9:2249. DOI: 10.3389/fmicb.2018.02249

Lambert J, Keppi E, Dimarcq J, Wicker C, Reichhart J, Dunbar B, et al. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides (insect defensins/Gram-positive bacteria/amino acid sequence/fast atom bombardment mass spectrometry). D Proc Natl Acad Sci USA. 1989;86:262-266

Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40(4):430-443. DOI: 10.1002/jms.856

Mirsaleh-Kohan N, Robertson WD, Compton RN. Electron ionization time‐of‐flight mass spectrometry: Historical review and current applications. Mass Spectrom Rev. 2008;27(3):237-285. DOI: 10.1002/mas.20162

Downloads

Publicado

2021-03-23

Como Citar

Caleffe, R. R. T., Oliveira, S. R. de, Polonio, J. C., Daquila, B. V., Ruvolo-Takasusuki, M. C. C., Pamphile, J. A., Conte, H., & Meurer, E. C. (2021). BIOPROSPECÇÃO DE PEPTÍDEOS ANTIMICROBIANOS EM LARVAS DE CALLIPHORIDAE (DIPTERA): UMA REVISÃO SISTEMÁTICA SOBRE METODOLOGIAS DE EXTRAÇÃO, PURIFICAÇÃO E DETECÇÃO. Saúde (Santa Maria), 47(1). https://doi.org/10.5902/2236583449767

Edição

Seção

Artigos de Revisão