BIOPROSPECÇÃO DE PEPTÍDEOS ANTIMICROBIANOS EM LARVAS DE CALLIPHORIDAE (DIPTERA): UMA REVISÃO SISTEMÁTICA SOBRE METODOLOGIAS DE EXTRAÇÃO, PURIFICAÇÃO E DETECÇÃO
DOI:
https://doi.org/10.5902/2236583449767Palavras-chave:
Defensinas. Peptídeos Catiônicos Antimicrobianos. Espectrometria de Massas por Ionização por Electrospray.Resumo
Os insetos apresentam a maior biodiversidade entre a classe Animal e são fontes ricas de produtos biotecnológicos. Espécies da família Calliphoridae (Diptera) apresentam hábitos necrófagos durante a fase larval, assim são expostas a diferentes microrganismos, produzindo peptídeos antimicrobianos (AMPs) como sistema de defesa. O objetivo deste trabalho foi realizar um levantamento bibliográfico dos principais peptídeos antimicrobianos identificados em Calliphoridae (Diptera), fornecendo dados para a bioprospecção de novos compostos. A revisão bibliográfica foi realizada nas plataformas: Google Acadêmico e SciFinder e foram selecionados 56 artigos para o desenvolvimento deste trabalho. Os AMPs possuem atividade contra amplo espectro de bactérias gram-positivas e gram-negativas, por isso apresentam grande interesse para tratamentos de feridas (e.g.: Terapia Larval) e bioprospecção de novos antibióticos. Estas moléculas são obtidas a partir do produto de excreção e secreção das larvas de Calliphoridae e sua ação tem como alvo primário a membrana celular das bactérias, devido interações eletroestáticas e interações de van der Waals com a membrana lipídica. A utilização de técnicas de separação acopladas com espectrometria de massas permitiu a identificação e caracterização de peptídeos da classe Defensina em diferentes espécies de califorídeos. A bioprospecção de novas moléculas antimicrobianas em moscas é uma área promissora dentro da biotecnologia, devido ao aumento do número de bactérias resistentes aos antibióticos atuais.
Downloads
Referências
Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evid Based Complement Alternat Med. 2014; 592419
Mumcuoglu KY, Miller J, Mumcuoglu M, Friger M, Tarshis M. Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera:Calliphoridae). J Med Entomol. 2001;38:161–166
Simmons SW. A bactericidal principle in excretions of surgical maggots which destroys important aetiological agents of pyogenic infections. J Bacteriol. 1935;30: 253–267
Pavillard ER, Wright EA. An antibiotic from maggots. Nature. 1957;180:916–917
Arora S, Sing LC, Baptista C. Antibacterial activity of Lucilia cuprina maggot extracts and its extraction techniques. Int J Integ Biol. 2010;9(1):43-48
Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterization of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Micro Infec. 2004;6:1297–1304. DOI: 10.1016/j.micinf.2004.08.011
Masiero FS, Aquino MFK, Nassu MP, Pereira DIB, Leite DS, Thyssen PJ. First Record of Larval Secretions of Cochliomyia macellaria (Fabricius, 1775) (Diptera: Calliphoridae) Inhibiting the Growth of Staphylococcus aureus and Pseudomonas aeruginosa. Neotrop Entomol. 2016. DOI: 10.1007/s13744-016-0444-4
Ratcliffe NA, Vieira CS, Mendon PM, Caetano RL, Queiroz MMC, Garcia ES, et al. Detection and preliminary physico-chemical properties of antimicrobial components in the native excretions/secretions of three species of Chrysomya (Diptera, Calliphoridae) in Brazil. Acta Trop. 2015;147:6–11
Andersen AS, Joergensen B, Bjarnsholt T, Johansen H, Karlsmark T, Givskov M, et al. Qourum-sensing-regulated virulence factors in Peudomonas aerugionosa are toxic to Lucilia sericata maggots. Microbiol. 2010;156:400-407. DOI: 10.1099/mic.0.032730-0.
Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol. 2010;24:375–381. DOI: 10.1111/j.1365-2915.2010.00902.x
Čeřovský V, Zdarek J, Fucik V, Monincová L, Voburka Z, Bém R. Lucifensin, the long-shought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67:455-466
Valachová I, Bohová J, Pálošová Z, Takáč P, Kozánek M, Maitán J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell Tissue Res. 2013;353:165–171. DOI: 10.1007/s00441-013-1626-6
Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11:217–221
Cazander G, Kiril MD, van Veen EB, Bouwman LH, Bernards AT, Jukema GN. The Influence of Maggot Excretions on PAO1 Biofilm Formation on Different Biomaterials. Clin Orthop Relat Res. 2009;467:536–545. DOI: 10.1007/s11999-008-0555-2
van der Plas MJ, Van der Does AM, Baldry M, Dogterom-Ballering HC, Van Gulpen C, van Dissel JT, et al. Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 2007;9(4):507-14.
van der Plas MJA, Dambrot C, Dogterom-Ballering HCM, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother. 2010;65:917–923. DOI: 10.1093/jac/dkq042. 2010.
Valachová I, Bohová J, Kozánek M, Takáč P, Maitán J. Lucilia sericata medicinal maggots: a new source of antimicrobial compounds. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). 2013.
Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins. 2018;10:461. DOI: 10.3390/toxins10110461
Carvalho CJB, Mello-Patiu CA. Key to the adults of the most common forensic species of Diptera in South America. Reva Bras Entomol. 2008;52(3):390-406
Awad H, Khamis MM, El-Aneed A. Mass Spectrometry, Review of the Basics: Ionization. Appl Spectrosc Rev. 2014;50(2):158-175. DOI: 10.1080/05704928.2014.954046.
Chapman AD. Numbers of Living Species in Australia and the World, 2 ed. Australian Government, Department of the Environment, Water, Heritage and the Arts. 2009
Raven PH, Yeates DK. Australian biodiversity: threats for the present, opportunities for the future. 2007.
Baer WS. The treatment of chronic osteomyelitis with the maggot (larva of the blow fly). J Bone Joint Surg Am. 1931;13:438–475
Wang T, Wang W, Li F, Chen Y, Jiang D, Chen Y, et al. Maggot excretions/secretions promote diabetic wound angiogenesis via miR18a/19a-TSP-1 axis. Diabetes Res Clin Pract. 2020;165. DOI: 108140. 2020. 10.1016/j.diabres.2020.208140.
Linger RJ, Belikoff EJ, Yan Y, Li F, Wantuch HA, Fitzsimons HL, et al. Towards next generation maggot debridement therapy: transgenic Lucilia sericata larvae that produce and secrete a human growth factor. BMC Biotechnol. 2016;16:30. DOI: 10.1186/s12896-016-0263-z
Stadler F. The maggot therapy supply chain: a review of the literature and practice. Med Vet Entomol. 2020;34:1-9. DOI: 10.1111/mve.12397
Fleischmann W, Grassberger M, Sherman R. Maggot Therapy: A Handbook of Maggot- Assisted Wound Healing. Thieme Verlag Stuttgart. 2004.
Hobson RP. On an enzyme from blow-fly larvae (Lucilia sericata) which digests collagen in alkaline solution. Biochem J. 1931;25:1458–1463
Valachova I, Majtan T, Takac P, Majtan J. Identification and characterization of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed. 2014;12(3):171-177. DOI: 10.1016/j.jab.2014.01.001
Caleffe RRT, Oliveira SR, Gigliolli AAS, Ruvolo-Takasusuki MC, Conte H. Bioprospection of immature salivary glands of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). Micron. 2018;112:55-62. DOI: 10.1016/j.micron.2018.06.007.
Grassberger M, Sherman RA, Gileve O, Kim C, Mumcuoglu KY. Biotherapy - History, Principles and Practice. Springer. 2013.
Yakovlev AY, Nesin AP, Simonenko NP, Gordyal NA, Tulin DV, Kruglikoval AA, et al. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae In Vitro. Cell Dev Biol Animal. 2016. DOI: 10.1007/s11626-016-0078-1.
Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Pept. 2013;675391. DOI: 10.1155/2013/675391
Hultmark D, Engström A, Bennich H, Kapur R, Boman HG. Insect immunity. Isolation and structure of cecropin D and four minor antibacterial components from cecropia pupae. Eur J Biochem. 1982;127:207–217
van Hofsten P, Faye I, Kockum K, Lee JY, Xanthopoulos KG, Boman IA. Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc Nat Acad Sci USA. 1985;82:2240–2243
Moore AJ, Beazley WD, Bibby MC, Devine DA. Antimicrobial activity of cecropins. J Antimicrobiol Chemother. 1996;37:1077–1089
Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1529–1539
Fu H, Björstad A, Dahlgren C, Bylund J. A bacterial cecropin-A peptide with a stabilized _-helical structure possess an increased killing capacity but no proinflammatory activity. Inflammation. 2004;28:337–343
Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life. 2016;68:652–662
Durell SR, Raghunathan G, Guy HR. Modeling the ion channel structure of cecropin. Biophys J. 1992;63:1623–1631
Srisailam S, Kumar TKS, Arunkumar AI, Leung KW, Yu C, Chen HM. Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. Eur J Biochem. 2001;268:4278–4284
Chalk R, Townson H, Ham PJ. Brugia pahangi: The effects of cecropins on microfilariae in vitro and in Aedes aegypti. Exp Parasitol. 1995;80:401–406
Andrä J, Berninghausen O, Leippe M. Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol. 2001;189:169–173
Guo C, Huang Y, Zheng H, Tang L, He J, Xiao L, et al. Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp Ther Med. 2012;4:1063–1068
Park SI, An HS, Chang BS, Yoe SM. Expression, cDNA cloning, and characterization of the antibacterial peptide cecropin D from Agrius convolvuli. Anim Cells Syst. 2013;17:23–30
Hou ZP, Wang WJ, Liu ZQ, Liu G, Souffrant WB, Yin YL. Effect of lactoferricin B and cecropin P1 against enterotoxigenic Escherichia coli in vitro. J Food Agric Environ. 2011;9:271–274
Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, et al. Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. J Pept Sci. 2016;22:214–221.
Téllez GA, Castaño-Osorio JC. Expression and purification of an active cecropin-like recombinant protein against multidrug resistance Escherichia coli. Protein Expr Purif. 2014;100:48–53
Lu X, Shen J, Jin X, Ma Y, Huang Y, Mei H, et al. Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli. Appl Microbiol Biotechnol. 2012;95:939–945
Carlsson A, Engström P, Palva ET, Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun. 1991;59:3040–3045
Cudic M, Bulet P, Hoffmann R, Craik DJ, Otvos LJ. Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects. Eur J Biochem. 1999;266:549–558
Keppi E, Pugsley AP, Lambert J, Wicker C, Dimarcq JL, Hoffmann JA, et al Mode of action of diptericin A, a bactericidal peptide induced in the hemolymph of Phormia terranovae larvae. Insect Biochem Physiol. 1989;10:229–239
McManus AM, Otvos LJ, Hoffmann R, Craik DJ. Conformational studies by NMR of the antimicrobial peptide, drosocin, and its non-glycosylated derivative: Effects of glycosylation on solution conformation. Biochemistry. 1999;38:705–714
Lele DS, Talat S, Kumari S, Srivastava N, Kaur KJ. Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a Proline rich antimicrobial peptide. Eur J Med Chem. 2015;92:637–647
Bulet P, Urge L, Ohresser S, Hetru C, Otvos LJ. Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila. Eur J Biochem. 1996;238:64–69
Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem. 1995;233:694–700
Cociancich S, Dupont A, Hegy G, Lanot R, Holder F, Hetru C, et al. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J. 1994;300:567–575.
Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos LJ. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001;40:3016–3026
Boxell A, Lee SH, Jefferies R, Watt P, Hopkins R, Reid S, et al. Pyrrhocoricin as a potential drug delivery vehicle for Cryptosporidium parvum. Exp Parasitol. 2008;119:301–303
Díaz-Roa A, Espinoza-Culupú A, Torres-García O, Borges MM, Avino IN, Alves FL, et al. Antimicrobial Peptide Isolated from Sarconesiopsis magellanica Excretions and Secretions. Molecules. 2019;24:2077. DOI: 10.3390/molecules24112077
Pöppel AK, Koch A, Kogel KH, Vogel H, Kollewe C, Wiesner J, et al. Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata. Biol Chem. 2014;395(6):649–656. DOI: 10.1515/hsz-2013-0263
Sherman RA, Tran JMT. A simple, sterile food source for rearing the larvae of Lucilia sericata (Diptera: Calliphoridae). Med Vet Entomol. 1995;9:393-398
Mackerras MJ, Freney MR. Observations on the nutrition of maggots of Australian blowflies. J Exp Biol. 1932; 10:237-246
Thyssen PJ, Nassu MP, Nitsche MJT, Leite DS. Sterilization of immature blowflies (Calliphoridae) for use in larval therapy. J Med Med Sci. 2013;4(10):405-409. DOI: 10.14303/jmms.2013.142.
Dellavecchia DL, Filho RGS, Aguiar VM. Sterilization of Chrysomya putoria (Insecta: Diptera: Calliphoridae) Eggs for Use in Biotherapy. J Insect Sci. 2014;14:160. DOI: 10.1093/jisesa/ieu022
El Shazely B, Veverka V, Fûčk V, Voburka Z, Žďárek J, Čeřovský V. Lucifensin II, a Defensin of Medicinal Maggots of the Blowfly Lucilia cuprina (Diptera: Calliphoridae). J Med Entomol. 2013;50(3):571-578
Fen JB, Mann M, Menga CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64-71. DOI: 10.1126/science.2675315
Banerjee S, Mazumdar S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int J Anal Chem. 2012;282574:40. DOI: 10.1155/2012/282574
Díaz-Roa A, Patarroyo MA, Bello FJ, Silva PI. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol. 2018;9:2249. DOI: 10.3389/fmicb.2018.02249
Lambert J, Keppi E, Dimarcq J, Wicker C, Reichhart J, Dunbar B, et al. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides (insect defensins/Gram-positive bacteria/amino acid sequence/fast atom bombardment mass spectrometry). D Proc Natl Acad Sci USA. 1989;86:262-266
Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40(4):430-443. DOI: 10.1002/jms.856
Mirsaleh-Kohan N, Robertson WD, Compton RN. Electron ionization time‐of‐flight mass spectrometry: Historical review and current applications. Mass Spectrom Rev. 2008;27(3):237-285. DOI: 10.1002/mas.20162
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direito autoral (Copyright): todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR/.
A Declaração de Direito Autoral e os itens a serem observados podem ser visualizados abaixo:
1. Política para Periódicos de Acesso Livre
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Todo o conteúdo do periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR/.