Synthesis and characterization of the poly-(sorbitol co-citrate adipate) a biopolymer aiming to obtain a biomaterial

Authors

DOI:

https://doi.org/10.5902/2236117064836

Keywords:

Global environment, Polymerization, Copolyester, Sustainability

Abstract

This work describes the synthesis and physicochemical and microstructural characterization of poly(sorbitol adipate co-citrate) with the aim of obtaining a sustainable biopolymer derived from renewable and non-toxic sources intended for applications such as biomaterial. Polymerizations at three different ratios of sorbitol and adipic and citric acids (A, B and C) were studied. The materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. Such analyses showed that only in state C was an amorphous copolyester obtained, with different particle sizes and visibly hard and with a translucent yellowish color.

Downloads

Download data is not yet available.

Author Biographies

Adriano de Ulhôa Torres, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, MG

programa de Pós-Graduação em Tecnologias para o Desenvolvimento Sustentável/PPGTDS,

Boutros Sarrouh, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, MG

Doutorado em Biotecnologia Industrial pela Escola de Engenharia de Lorena - USP, Brasil(2009)
Professor Efetivo da Universidade Federal de São João Del-Rei , Brasil

Renata Carolina Zanetti Lofrano, Universidade Federal de São João del-Rei, Campus Alto Paraopeba, MG

Doutorado em Ciências pela Faculdade de Filosofia Ciências e Letras de Ribeirão Preto/USP, Brasil(2002)
Professor Associado III da Universidade Federal de São João Del-Rei , Brasil

References

ASKADSKI, A. A. Control, physical properties of polymers prediction and control. G&B Publishers, Moscou, 1996.

BUDAVARI, S. (Ed.). The Merck Index: an encyclopedia of chemicals, drugs, and biologicals. 12. ed. Estados Unidos: [s.n.], 1996.

BIRKHED, D.; EDWARDSSON, S.; KALFAS, S.; SVENSÄTER, G. Cariogenicity of sorbitol. Swedish Dental Journal, vol. 8, n. 3, p. 147-54, 1984. PMID: 6592773

FARIAS, S. S. DE; SIQUEIRA, S. M. C.; CRISTINO, J. H. S.; DA ROCHA, J. M. Biopolímeros: uma alternativa para promoção do desenvolvimento sustentável. Revista Geonorte, v. 7, n. 26, p. 61–77, 2016. Disponível em: //www.periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/2759. Acesso em: 11 jan. 2023.

EPOCA. Disponível em: https://epoca.globo.com/ciencia-e-meio-ambiente/blog-do planeta/noticia/2017/07/estudo-estima-quanto-plastico-ja-foi-produzido-no-mundo-83-bilhoes-de-toneladas.html. Acesso em: 11 fev. 2020.

FRÁGUAS, R. M.; SIMÃO, A. A.; FARIA, P. V.; QUEIROZ, E. DE R.; OLIVEIRA, E. N. J. R.; ABREU, C. M. P. Preparo e caracterização de filmes comestíveis de quitosana. Polímeros, v. 25, n. (spe), p. 48-53, 2015. Disponível em: https://doi.org/10.1590/0104-1428.1656. Acesso em: 11 jan. 2023.

PASUPULETI, S.; MADRAS, G. Synthesis and Degradation of Sorbitol-Based Polymers. Journal of Applied Polymer Science, v. 121, n. 5, p. 2861–2869, 2011. 0021-8995. Doi: https://doi.org/10.1002/app.33840

SABA, N.; JAWAID, M.; ALOTHMAN, O. U.; PARIDA, M. T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials, v. 106, p. 149-159, 2016. Doi: 10.1016/j.conbuildmat.2015.12.075

SCOPEL, E.; CONTI, P. P.; DALMASCHIO, C. J.; DA SILVEIRA, V. C. Extração de Ácido Cítrico do Limão e sua Utilização para a Remoção da Dureza da Água: Um Método Alternativo para Aulas de Química. Revista Virtual de Química, v. 9, n. 3, p. 912-923, 2017.

SPERLING, L. H. Introduction to physical polymer science. 4º ed. John Wiley and Sons, 2006.

SHEFER, A.; GOTTLIEB, M. Effect of crosslinks on the glass transition temperature of end-linked elastomers. Macromolecules, v. 25, n. 15, p. 4036–4042, 1992.

SHOGREN, R. L.; DOLL, K. M.; WILLETT, J. L.; SWIFT, G. Solvent Free Polymerization of L-Aspartic Acid in the Presenceof D-Sorbitol to Obtain Water Soluble or Network Copolymer. Journal of Polymers and the Environment, v. 17, n. 103, p.103–108, 2009.

THAM, W. H.; et al. Biodegradable hydroxyapatite/poly(sorbitol sebacate malate) composites: Mechanical and thermal properties. Songklanakarin Journal of Science and Technology, v. 35, n. 1, p. 57-61, 2013.

TROVATTI, E.; SANTOS, A. M.; AMARAL, A. A.; MENEGUIN, A. B.; MATOS, B. D. M.; PACHECO, G.; CARVALHO, R. A.; LAZARINI, S. C.; CARDOSO, V. M.; LUSTRI, W. R.; BARUD, H. S. Biopolímeros: aplicações farmacêutica e biomédica. Eclética Química, v. 41, p. 1-31, 2016.

UTERLASS, M. M. Creating geomimetic polymers. Materials today, v. 18, n. 5, p. 242-243, 2015.

ZANKEL, A.; NACHTNEBEL, M.; MAYRHOFER, C.; WEWERKA, K.; MÜLLNER, T. Characterisation of Polymers in the Scanning Electron Microscope—From Low-Voltage Surface Imaging to the 3D Reconstruction of Specimens. In: Grellmann, W.; Langer, B. (eds). Deformation and Fracture Behaviour of Polymer Materials. Springer Series in Materials Science, v. 247, p. 95-108, 2017.

Published

2023-01-17

How to Cite

Torres, A. de U., Sarrouh, B., & Lofrano, R. C. Z. (2023). Synthesis and characterization of the poly-(sorbitol co-citrate adipate) a biopolymer aiming to obtain a biomaterial. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 26, e9. https://doi.org/10.5902/2236117064836

Issue

Section

ENVIRONMENTAL THECNOLOGY

Most read articles by the same author(s)