This is an outdated version published on 2020-12-04. Read the most recent version.

Estimation of soil loss by the USLE model in a mountain basin in the south of Santa Catarina state, Brazil

Authors

DOI:

https://doi.org/10.5902/2236117062695

Keywords:

Water erosion, GIS, Mountain river basin

Abstract

Water erosion is a factor of soil degradation that is triggered by the impact of raindrops originated by intense rainfall disaggregating the soil, followed by the carrying of particles by surface runoff. In the erosion process, in addition to soil loss, nutrients, fertilizers, and pesticides are carried resulting in water courses and water pollution. Erosion can have a major impact on agricultural production, when soil use and management techniques are not used. Therefore, this study aimed to evaluate the soil loss in the Malacara river basin, which is a sub-basin of the Mampituba river basin characterized by a contrasting relief, with high altitudes in the escarps of Serra Geral and floodplain. The method used for the development of this research was the application of the Universal Soil Loss Equation (USLE). USLE soil loss estimation requires the following factors: rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), soil use and management (C), and erosion control practice factor (P). The estimated rainfall erosivity was 5,754.2 MJ mm ha-1 h-1 year-1. Erodibility was determined for the soils present in the basin, highlighting a high value for gleysoil. The topographic factor (LS) showed values from 0 to greater than 20, which corresponds to the low to very high runoff potential. The floodplain showed lower runoff rates, while for the locations close to the enclosed valleys in the Malacara canyon, the runoff potential varied from high to very high. The soil use and management factors and conservation practices (CP) obtained a maximum value of 0.404, corresponding to the exposed soil; the second most representative class was agricultural areas, with a value of 0.145. The soil loss in the Malacara river basin varied from 0 to more than 200 t ha-1 year-1. In fact, 87.38% of the area presents a degree of sheet erosion normal to slight and, only 2.94% of the area has a high or very high degree of erosion. Moreover, due to the relief characteristics with shallow soils and intense rainfall in mountainous basins, knowing and understanding soil losses due to erosion is crucial for the adequate management of water resources in river basins.

 

Downloads

Download data is not yet available.

Author Biographies

Lucas Kister Amaral, University of the Far South of Santa Catarina, Criciúma, SC

Mestrando em Ciências Ambientais

Sabrina Baesso Cadorin, University of the Far South of Santa Catarina, Criciúma, SC

Mestranda em Ciências Ambientais

Álvaro José Back, Company of Agricultural Research and Rural Extension of Santa Catarina, Cricúma, SC

Doutor em Recursos Hídricos e Saneamento Ambiental

Fernanda Dagostin Szymanski, Federal University of Santa Catarina, Florianópolis, SC

Mestranda em Energia e Sustentabilidade

Claudia Weber Corseuil, Federal University of Santa Catarina, Florianópolis, SC

Doutora em Agronomia

References

BACK, Á. J. Erosividade da chuva para a região do Planalto Serrano de Santa Catarina, Brasil. Revista de Ciências Agrárias. 2018;41(2):298-308.

BACK, Á. J. Informações climáticas e hidrológicas dos municípios catarinenses (com programa HidroClimaSC). Florianópolis: Epagri, 2020. 157 p.

BACK, Á. J. Chuvas intensas e chuva para o dimensionamento de estruturas de drenagem para o estado de Santa Catarina. (Com programa HidroChuSC para cálculos). Florianópolis: Epagri, 2013. 139 p.

BACK, Á. J; POLETO, C. Distribuição espacial e temporal da erosividade das chuvas no estado de Santa Catarina, Brasil. Revista Brasileira de Climatologia. 2018; 22:381-403.

BARBOSA, A. F.; OLIVEIRA, E. F. MIOTO, C. L.; FILHO, A. C. P. Aplicação da Equação Universal de Perda do Solo (USLE) em softwares Livres e Gratuitos. Anuário do Instituto de Geociências: UFRJ. 2015;38:170-179.

BERTONI, J.; LOMBARDI NETO, F. Conservação do solo. 8th ed. São Paulo: Ícone; 2012. 335p.

BOHN, L. Expressões de conhecimento de grupos sociais locais para a gestão de recursos hídricos na bacia hidrográfica do rio Mampituba. UFSC: Reconhecimento da Bacia Hidrográfica do Rio Mampituba. 2008. 30 p.

CARDOSO, G.; ZANANDREA, F.; MICHEL, G. P.; POLETO, C. Aplicação da USLE na predição de perdas de solo em uma sub-bacia hidrográfica na região metropolitana de Porto Alegre - RS. Congresso Internacional de Hidrossedimentologia. 2020. 3 p.

CARVALHO, N. O. Hidrossedimentologia Prática. 2nd ed. Interciência; 2008.

CASSOL, E. A.; MARTINS, D.; ELTZ, F. L. F.; LIMA, V. S. DE; BUENO, A. C. Erosividade e padrões hidrológicos das chuvas de Ijuí (RS) no período de 1963 a 1993. Revista Brasileira de Agrometeorologia. 2007;15(3):220-231.

CUIABANO, M. N.; NEVES, S. M, A. S.; NUNES, M. C. M.; SERAFIM, M. E.; NEVES, R. J. Vulnerabilidade ambiental à erosão hídrica na sub-bacia do córrego do guanabara/Reserva do Cabaçal-MT Brasil. Geociências, UNESP. 2017;36(1):138-153.

ELTZ, F. L. F.; CASSOL, E. A.; PASCOTINI, P. B.; AMORIM, R. S. S. Potencial erosivo e características das chuvas de São Gabriel, RS, de 1963 a 1993. Revista Brasileira de Engenharia Agrícola e Ambiental. 2013;17(6):647-654.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ) . Súmula da 10. Reunião Técnica de Levantamento de Solos. Rio de Janeiro: 1979. 83 p. (Embrapa-SNLCS. Micelânea, 1).

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Solos do Estado de Santa Catarina. Rio de Janeiro: Embrapa solos; 2004. 721 p.

FAO - Food and Agriculture Organization. La erosión del suelo por el agua: Algunas medidas para combatirla en las tierras de cultivo. Cuadernos de fomento agropecuario de la Organización de Las Naciones Unidas, Roma: FAO; 1980; (81). 207 p.

FIORIO, P. R. Avaliação cronológica do uso da terra e seu impacto no ambiente da microbacia hidrológica do córrego do ceveiro da região de piracicaba - SP. Universidade de São Paulo; 1998. 130 p.

IVES, J. D.; MESSERLI, B. The Himalayan Dilemma: Reconciling Development and conservation. Routledge, London and New York, 1989. 324p.

KINNELL, P. L. A.; RISSE, L. M. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. Soil Science Society American Journal, v.62, 1998. p.1667-1672.

KINNELL, P. I. A. Event soil loss, runoff and the universal soil loss equation family of models: a review. Journal of Hydrology, v.385, 2010. p.384–397.

KOBIYAMA, M.; GOERL, R. F.; FAN, F. M.; CORSEUIL, C. W.; MICHEL, G. P.; DULAC, V. F. Abordagem integrada para gerenciamento de desastre em região montanhosa com ênfase no fluxo de detritos. Revista de Gestão e Sustentabilidade Ambiental. Florianópolis. 2018;7(esp):31-65.

KUKSINA, L. V.; GOLOSOV, V. N.; KUZNETSOVA, Y. S. Cloudburst Floods in Mountains: State of Knowledge, Occurrence, Factors of Formation. Geography and Natural Resources, vol. 38, 2017. p. 20-29, doi: https://doi.org/10.1134/S1875372817010036.

MELLO, C. R; VIOLA, M. R.; BESKOW, S.; NORTON, L. D. Multivariate models for annual rainfall erosivity in Brazil. Geoderma 202-203, 2013, 88-102.

MIQUELONI, D. P.; GIANELLO, E. M.; BUENO, C. R. P. Variabilidade espacial de atributos e perda de solo na definição de zonas de manejo. Pesq. Agropec. Trop. 2015;45(1):18-28.

MANNIGEL, A. R.; CARVALHO, M. P.; MORETI, D; MEDEIROS, L. R. Fator erodibilidade e tolerância de perda dos solos do Estado de São Paulo. Acta Scientiarum. Maringá. 2008. 24(5):1335-1340.

MINELLA, J. P. G.; MERTEN, G. H.; REICHERT, J. M.; SANTOS, D. R. Identificação e implicações para a conservação do solo das fontes de sedimentos em bacias hidrográficas. Revista Brasileira de Ciência do Solo. 2007;31:1637-1646.

MINELLA, J. P. G.; MERTEN, G. H.; RUHOFF, A. L. Utilização de métodos de representação espacial para cálculo do fator topográfico na equação universal de perda de solo revisada em bacias hidrográficas. Revista Brasileira de Ciência do Solo, 2010; 34:1455-1462.

MOORE. I. D.; BURCH, G. J. Modeling erosion and deposition: Topographic effects. Transactions of American Society of Agriculture Engineering. 1986a;29(6):1624-1630.

MOORE. I. D.; BURCH, G. J. Physical basis of the length slope factor in the Universal Soil Loss Equation. Soil Science Society of America. 1986b;50(5):1294-1298.

PANAGOS, P.; BALLBIO, C.; BORRELLI, P.; MEUSBURGUER, K.; KLIK, A.; ROUSSEVA, S.; TADIC, M. P.; MICHAELIDES, S.; HRABALÍKOVA, M.; OLSEN, P.; AALTO, P. O.; LAKATOS, M.; RYMSZEWICZ, A.; DUITRESCU, A.; BERGUERÍA, S.; ALEWELL, C. Rainfall Erosivity in Europe. Science of The Total Environment, v.511, 2015. p.801-814.

PANDOLFO, C.; BRAGA, H. J.; SILVA JÚNIOR, V. P.; MASSIGNAN, A. M.; PEREIRA, E. S.; THOMÉ, V. M. R.; VALCI, F. V. Atlas Climático do Estado de Santa Catarina. Florianópolis: EPAGRI, 2002. 334 p.

PANACHUKI, E.; SOBRINHO, T. A.; VITORINO, A. C. T.; CARVALHO, D. F.; URCHEI, M. A. Parâmetros físicos do solo e erosão hídrica sob chuva simulada, em área de integração agrícola-pecuária. Revista Brasileira de Engenharia Agrícola e Ambiental. 2006;10(2):261-268.

PINTO, S. A. F.; GARCIA, G. J. Experiências de aplicação de geotecnologias e modelos na análise de bacias hidrográficas. Revista do Departamento de Geografia. 2011;17:30-37.

REGINATTO, G. M. P; MACIEL, C. B.; CORSEUIL, C. W.; GRANDO, A.; MACCARINI, M.; HIGASHI, R. A. R.; FEILSTRECKER, L. B.; JÚNIOR, R. S. Avaliação das perdas de solo utilizando o modelo Rusle integrado a um SIG. XIX Simpósio Brasileiro de Recursos Hídricos. 2015.

RENARD, K. G.; FOSTER, G. R., WEESIES, G. A., MCCOLL, D. K.; YODER, D. C. Predicting soil erosion by water. A guide to conservation planning with the revised Universal Soil Loss Equation. USDA, Agricultural Handbook nº 703. US Government Printing Office, Washington D. C., EUA. 1997.

SANTOS, C. N. El Niño, La Niña e a erosividade das chuvas no Estado do Rio Grande do Sul. Pelotas: Universidade Federal de Pelotas. 2008. 140 p.

SCHEIBE, F. et al. Atlas ambiental da Bacia do rio Araranguá: Santa Catarina – Brasil – Florianópolis: UFSC: Cidade Futura, 2010. 64 p.

SANTA CATARINA. SDS. Levantamento aerofotográfico entregue aos municípios do Sul de Santa Catarina. Florianópolis: Secretaria de Desenvolvimento Sustentável, 2013.

SOBRINHO, T. A.; OLIVEIRA, P. T. S.; RODRIGUES, D. B. B.; AYRES, F. M. Delimitação automática de bacias hidrográficas utilizando dados SRTM. Jaboticabal: Eng. Agríc. 2010;30(1).

STOFFEL, M.; WYŻGA, B.; MARSTON, R. A. Floods in mountain environments: A synthesis. Geomorphology. 2016;272:1-9.

SZYMANSKI, F. D.; KOBIYAMA, M.; BELLETINI, A. L.; VASCONCELLOS, S. M.; MAMÉDIO, F. M. P.; PAIXÃO, M. A.; CORSEUIL, C. W. Velocidade média dos rios montanhosos da região sul de Santa Catarina, Brasil. Porto Alegre: Anais do 5º Simpósio sobre Sistemas Sustentáveis, 2019.

VALVASSORI, M. L.; BACK, Á. J. Avaliação do potencial erosivo das chuvas em Urussanga, SC, no período de 1980 a 2012. Viçosa: Revista Brasileira de Ciência do Solo. 2014;38:1011-1019.

WISCHMEIER, W. H. A rainfall erosion index for a universal soil-loss equation. In: Soil Science Society of America Journal. 1959. p. 246 – 249.

WISCHMEIER, W. H.; SMITH, D. D. Predicting rainfall erosion losses: a guide to conservation planning. U. S. Department of Agriculture. 1978;(537):1-58.

WILLIAMS, J. R.; BERNDT, H. D. Sediment yield prediction and utilization of rangelands. Documentation and user guide. US Department of Agriculture, ARS 63, Washington. 1977.

Downloads

Published

2020-12-04

Versions

How to Cite

Amaral, L. K., Cadorin, S. B., Back, Álvaro J., Szymanski, F. D., & Corseuil, C. W. (2020). Estimation of soil loss by the USLE model in a mountain basin in the south of Santa Catarina state, Brazil. Revista Eletrônica Em Gestão, Educação E Tecnologia Ambiental, 24, e20. https://doi.org/10.5902/2236117062695