Coberturas e reequilíbrio de carteiras: Uma análise para as ações ouro e prata nos mercados bolsistas da América Latina
DOI:
https://doi.org/10.5902/1983465961307Palavras-chave:
Gold, Silver, Safe haven, Risk diversification, Latin America.Resumo
Finalidade - Esta pesquisa tem como objetivo analisar se o Ouro (Gold Bullion: Zurich) e a Prata (Silver Paris Spot E/KG), serão um porto seguro para a diversificação de carteiras nos mercados de ações da América Latina.
Desenho / metodologia / abordagem -Os dados analisados são os prices index dos mercados de ações da Argentina (S&P Merval), Brasil (Ibovespa), Chile (S&P/CLX IGPA), Peru (S&P/BVL General IGBL), México (IPC), EUA (Dow Jones), Ouro (Gold Bullion: Zurich), e a Prata (Silver Paris Spot E/KG), no período de 31 de dezembro de 2019 a 02 de setembro de 2020. Para respondermos à questão de investigação utilizamos a metodologia de Gregory and Hansen (1996), e o modelo VAR Granger Causality/Block Exogeneity Wald Tests. Constatações - Os resultados indicam que os mercados apresentam integrações e causalidades muito significativas, ou seja, o Ouro e a Prata não funcionam como portos seguros à diversificação de carteiras nos mercados de ações da América Latina.
Limitações/ implicações da pesquisa - A presente investigação recorreu a índices gerais, em estudos futuros podemos recorrer a índices setoriais, bem como a dados intradiários para ter evidências mais robustas no que concerne à diversificação de carteiras nestes mercados regionais.
Originalidade/valor - Esta investigação distingue-se dos estudos anteriores, porque incidiu sobre o reequilíbrio de carteiras, através da estimação de modelos de integração e choques entre o Ouro e a Prata, e os mercados da América Latina, o que se diferencia dos anteriores, que analisaram as dependências médias entre o ouro e os movimentos dos mercados financeiros, e entre o ouro e a depreciação da moeda.
Downloads
Referências
Balcilar, M., Demirer, R., Gupta, R., & Wohar, M. E. (2020). The effect of global and regional stock market shocks on safe haven assets. Structural Change and Economic Dynamics. https://doi.org/10.1016/j.strueco.2020.04.004
Balcilar, M., Hammoudeh, S., & Asaba, N. A. F. (2015). A regime-dependent assessment of the information transmission dynamics between oil prices, precious metal prices and exchange rates. International Review of Economics and Finance. https://doi.org/10.1016/j.iref.2015.02.005
Batten, J. A., Ciner, C., Kosedag, A., & Lucey, B. M. (2017). Is the price of gold to gold mining stocks asymmetric? Economic Modelling. https://doi.org/10.1016/j.econmod.2016.10.007
Bedoui, R., Guesmi, K., Kalai, S., & Porcher, T. (2020). Diamonds versus precious metals: What gleams most against USD exchange rates? Finance Research Letters. https://doi.org/10.1016/j.frl.2019.08.001
Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. Quarterly Review of Economics and Finance. https://doi.org/10.1016/j.qref.2020.03.004
Cheema, M. A., & Szulczuk, K. (2020). COVID-19 Pandemic and Its Influence on Safe Havens: An Examination of Gold, T-Bills, T-Bonds, U.S. Dollar, and Stablecoin. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3590015
Clemente, J., Montañés, A., & Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean. Economics Letters, 59(2), 175–182. https://doi.org/10.1016/S0165-1765(98)00052-4
Dias, R., da Silva, J. V., & Dionísio, A. (2019). Financial markets of the LAC region: Does the crisis influence the financial integration? International Review of Financial Analysis. https://doi.org/10.1016/j.irfa.2019.02.008
Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057–1072. https://doi.org/10.2307/1912517
Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, 55(2), 251. https://doi.org/10.2307/1913236
Gregory, A. W., & Hansen, B. E. (1996). Residual-based tests for cointegration in models with regime shifts. Journal of Econometrics, 70(1), 99–126. https://doi.org/10.1016/0304-4076(69)41685-7
Gujarati, D. N. (2004). Basic Econometrics. New York. https://doi.org/10.1126/science.1186874
Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. The Econometrics Journal. https://doi.org/10.1111/1368-423x.00043
He, Q., Liu, J., Wang, S., & Yu, J. (2020). The impact of COVID-19 on stock markets. Economic and Political Studies. https://doi.org/10.1080/20954816.2020.1757570
Huang, D., & Kilic, M. (2019). Gold, platinum, and expected stock returns. Journal of Financial Economics. https://doi.org/10.1016/j.jfineco.2018.11.004
Hussain Shahzad, S. J., Bouri, E., Roubaud, D., & Kristoufek, L. (2020). Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin. Economic Modelling. https://doi.org/10.1016/j.econmod.2019.07.023
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5
Johansen, S. (1988). Statistical Analysis of Cointegrated Vectors. Journal of Economic Dynamics and Control, 12(2–3), 231–254.
Kang, S. H., Yoon, S. M., Bekiros, S., & Uddin, G. S. (2020). Bitcoin as Hedge or Safe Haven: Evidence from Stock, Currency, Bond and Derivatives Markets. Computational Economics. https://doi.org/10.1007/s10614-019-09935-6
Lahmiri, S., & Bekiros, S. (2020). The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets. Chaos, Solitons and Fractals. https://doi.org/10.1016/j.chaos.2020.109936
Laily, S., Hashim, M., Ramlan, H., Huda, N., Razali, A., Zaidah, N., & Nordin, M. (2017). Macroeconomic Variables Affecting the Volatility of Gold Price. Journal of Global Business and Social Entrepreneurship (GBSE).
Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics. https://doi.org/10.1016/S0304-4076(01)00098-7
Ma, X., Yang, R., Zou, D., & Liu, R. (2020). Measuring extreme risk of sustainable financial system using GJR-GARCH model trading data-based. International Journal of Information Management, 50(January 2019), 526–537. https://doi.org/10.1016/j.ijinfomgt. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2018.12.013
Maghyereh, A., & Abdoh, H. (2020). Tail dependence between gold and Islamic securities. Finance Research Letters. https://doi.org/10.1016/j.frl.2020.101503
Mohammadpoor, S., & Rezazadeh, A. (2019). The Investigation of Time Varying Efficiency in Financial Markets of Iran: Case Study of Foreign Exchange and Gold Markets. Financial Research Journal. https://doi.org/10.22059/frj.2019.272213.1006790
Mohanasundari, M., Vidhyapriya, P., Sundharesalingam, P., & Kavitha, P. (2020). An analysis of the relationship between risk and return in the gold market of Asian countries. International Journal of Scientific and Technology Research.
Morales, L., & Gassie, E. (2014). Structural breaks and financial volatility: lessons from the BRIC countries. Economics, Management and Financial Markets.
Naeem, M. A., Hasan, M., Arif, M., Balli, F., & Shahzad, S. J. H. (2020). Time and frequency domain quantile coherence of emerging stock markets with gold and oil prices. Physica A: Statistical Mechanics and Its Applications. https://doi.org/10.1016/j.physa.2020.124235
Perron, P., & Phillips, P. C. B. (1988). Testing for a Unit Root in a Time Series Regression. Biometrika, 2(75), 335–346. https://doi.org/10.1080/07350015.1992.10509923
Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.138870
Sansa, N. A. (2020). The Impact of the COVID-19 on the Financial Markets: Evidence from China and USA. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3567901
Siddiqui, S., & Roy, P. (2019). Predicting volatility and dynamic relation between stock market, exchange rate and select commodities. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. https://doi.org/10.11118/actaun201967061597
Vikneswaran, M., Purdasy, S. B., Rashid, S. Z. A., & Basirduddin, R. (2020). The hedging and safe haven characteristics of gold vis-À-vis stock and currency: A study in mauritius. International Journal of Psychosocial Rehabilitation. https://doi.org/10.37200/IJPR/V24I2/PR200409
Yamaka, W., & Maneejuk, P. (2020). Analyzing the causality and dependence between gold shocks and asian emerging stock markets: A smooth transition copula approach. Mathematics. https://doi.org/10.3390/math8010120
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Revista de Administração da UFSM

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Até 2023 os direitos autorais eram transferidos pelos autores para a ReA/UFSM. A partir de 2024 os autores dos artigos publicados pela ReA/UFSM mantêm os direitos autorais de seus trabalhos.
A revista adota a licença Creative Commons (CC-BY 4.0), que permite que os artigos sejam reutilizados e distribuídos sem restrições, desde que o trabalho original seja devidamente citado.


