Guidelines and frameworks of governance for the adoption of generative artificial intelligence in higher education institutions: a scoping review

Auteurs-es

DOI :

https://doi.org/10.5902/1983465990871

Mots-clés :

Generative artificial intelligence, Higher education, Governance of generative artificial intelligence

Résumé

Purpose: This study examines academic production on guidelines and frameworks for the governance of generative artificial intelligence in higher education institutions.

Design/methodology: A scoping review was conducted utilizing the Web of Science database, analyzing publications from 2023 and 2024.

Findings: The results were organized into four thematic clusters: guidelines and frameworks, challenges in the adoption of generative artificial intelligence governance in higher education, stakeholder perceptions, and research gaps.

Research implications: The study provides insights and could serve as a reference for adopting generative artificial intelligence in other institutions.

Originality/value: This research contributes to the body of studies focused on the integration and governance of generative artificial intelligence in higher education institutions.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Bibliographies de l'auteur-e

Maria Gabrielle Soares Gomes, Universidade Federal do Rio Grande do Norte

Master's degree in Administration from the Federal University of Rio Grande do Norte.

Anatália Saraiva Martins Ramos, Universidade Federal do Rio Grande do Norte

Full professor in the Department of Administrative Sciences
PhD in Production Engineering from the Federal University of Rio de Janeiro

Karoline de Oliveira, Universidade Federal do ABC

Master's degree in Urban and Regional Studies from the Federal University of Rio Grande do Norte (UFRN).

Références

Alshahrani, B. T., Pileggi, S. F., & Karimi, F. (2024). A social perspective on AI in the higher education system: A semisystematic literature review. Electronics, 13(8), 1572. https://doi.org/10.3390/electronics13081572 DOI: https://doi.org/10.3390/electronics13081572

Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19-32. https://doi.org/10.1080/1364557032000119616 DOI: https://doi.org/10.1080/1364557032000119616

August, E. T., Anderson, O. S., & Laubepin, F. A. (2024). Brave new words: A framework and process for developing technology-use guidelines for student writing. Pedagogy in Health Promotion, 10(3), 187-196. https://doi.org/10.1177/23733799241235119 DOI: https://doi.org/10.1177/23733799241235119

Badmus, O., Rajput, S., Arogundade, J., & Williams, M. (2024). AI-driven business analytics and decision making. World Journal of Advanced Research and Reviews, 24(1), 616-633. https://doi.org/10.30574/wjarr.2024.24.1.3093 DOI: https://doi.org/10.30574/wjarr.2024.24.1.3093

Bukar, U. A., Sayeed, M. S., Razak, S. F. A., Yogarayan, S., & Amodu, O. A. (2024). An integrative decision-making framework to guide policies on regulating ChatGPT usage. PeerJ Computer Science, 10, Article e1845. https://doi.org/10.7717/peerj-cs.1845 DOI: https://doi.org/10.7717/peerj-cs.1845

Cacho, R. M. (2024). Integrating generative AI in university teaching and learning: A model for balanced guidelines. Online Learning, 28(3), 55-81. https://doi.org/10.24059/olj.v28i3.4508 DOI: https://doi.org/10.24059/olj.v28i3.4508

Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1), 38. https://doi.org/10.1186/s41239-023-00408-3 DOI: https://doi.org/10.1186/s41239-023-00408-3

Chiu, T. K. (2024). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 32(10), 6187-6203. https://doi.org/10.1080/10494820.2023.2253861 DOI: https://doi.org/10.1080/10494820.2023.2253861

Dabis, A., & Csáki, C. (2024). AI and ethics: Investigating the first policy responses of higher education institutions to the challenge of generative AI. Humanities and Social Sciences Communications, 11(1), 1-13. https://doi.org/10.1057/s41599-024-03526-z DOI: https://doi.org/10.1057/s41599-024-03526-z

Farrelly, T., & Baker, N. (2023). Generative artificial intelligence: Implications and considerations for higher education practice. Education Sciences, 13(11), 1109. https://doi.org/10.3390/educsci13111109 DOI: https://doi.org/10.3390/educsci13111109

Ghimire, A., & Edwards, J. (2024). From guidelines to governance: A study of AI policies in education. In International Conference on Artificial Intelligence in Education (pp. 299-307). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64312-536 DOI: https://doi.org/10.1007/978-3-031-64312-5_36

Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070 692 DOI: https://doi.org/10.3390/educsci13070692

Hofmann, P., Brand, A., Späthe, E., Lins, S., & Sunyaev, A. (2024). AI-based tools in higher education: A comparative analysis of university guidelines. In Proceedings of Mensch und Computer 2024 (pp. 665-673). https://doi.org/10.1145/3670653.3677513 DOI: https://doi.org/10.1145/3670653.3677513

Hwang, G. J., & Chen, N. S. (2023). Exploring the potential of generative artificial intelligence in education: applications, challenges, and future research directions. Journal of Educational Technology & Society, 26(2). https://doi.org/10.30191/ETS.202304_26(2).0014

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering (Technical Report EBSE-2007-01) . School of Computer Science and Mathematics, Keele University.

Kroon, N., do Céu Alves, M., & Martins, I. (2021). The impacts of emerging technologies on accountants’ role and skills: Connecting to open innovation - A systematic literature review. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 163. https://doi.org/10.3390/joitmc7030163 DOI: https://doi.org/10.3390/joitmc7030163

Kurtz, G., Amzalag, M., Shaked, N., Zaguri, Y., Kohen-Vacs, D., Gal, E., Zailer, G., & Barak-Medina, E. (2024). Strategies for integrating generative AI into higher education: Navigating challenges and leveraging opportunities. Education Sciences, 14(5), 503. https://doi.org/10.3390/educsci14050503 DOI: https://doi.org/10.3390/educsci14050503

Luo, J. (2024). A critical review of GenAI policies in higher education assessment: A call to reconsider the ‘originality’ of students’ work. Assessment & Evaluation in Higher Education, 1- 14. https://doi.org/10.1080/02602938.2024.2309963 DOI: https://doi.org/10.1080/02602938.2024.2309963

McCarthy, J. (2004). What is artificial intelligence? Stanford University.

Memarian, B., & Doleck, T. (2023). Fairness, accountability, transparency, and ethics (FATE) in artificial intelligence (AI), and higher education: A systematic review. Computers and Education: Artificial Intelligence, 5, Article 100152. https://doi.org/10.1016/j.caeai.2023.100152 DOI: https://doi.org/10.1016/j.caeai.2023.100152

Mhlanga, D. (2020). Industry 4.0 in finance: The impact of artificial intelligence (AI) on digital financial inclusion. International Journal of Financial Studies, 8(3), 45. https://doi.org/10.3390/ijfs8030045 DOI: https://doi.org/10.3390/ijfs8030045

Moore, S., & Lookadoo, K. (2024). Communicating clear guidance: Advice for generative AI policy development in higher education. Business and Professional Communication Quarterly, 87(4), 610-629. https://doi.org/10.1177/23294906241254786 DOI: https://doi.org/10.1177/23294906241254786

Moorhouse, B. L., Yeo, M. A., & Wan, Y. (2023). Generative AI tools and assessment: Guidelines of the world’s top-ranking universities. Computers and Education Open, 5, Article 100151. https://doi.org/10.1016/j.caeo.2023.100151 DOI: https://doi.org/10.1016/j.caeo.2023.100151

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.

Ogunleye, B., Zakariyyah, K. I., Ajao, O., Olayinka, O., & Sharma, H. (2024). A systematic review of generative AI for teaching and learning practice. Education Sciences, 14(6), 636. https://doi.org/10.3390/educsci14060636 DOI: https://doi.org/10.3390/educsci14060636

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372. https://doi.org/10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71

Perkins, M., Furze, L., Roe, J., & MacVaugh, J. (2024). The artificial intelligence assessment scale (AIAS): A framework for ethical integration of generative AI in educational assessment. Journal of University Teaching and Learning Practice, 21(06). https://doi.org/10.53761/q3azde36 DOI: https://doi.org/10.53761/q3azde36

Qadir, J. (2023). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. In 2023 IEEE Global Engineering Education Conference (EDUCON) (pp. 1–9). IEEE. https://doi.org/10.1109/EDUCON54358.2023.10125121 DOI: https://doi.org/10.1109/EDUCON54358.2023.10125121

Schneider, J., Abraham, R., Meske, C., & Vom Brocke, J. (2023). Artificial intelligence governance for businesses. Information Systems Management, 40(3), 229-249. https://doi.org/10.1080/10580530.2022.2085825 DOI: https://doi.org/10.1080/10580530.2022.2085825

Slimi, Z., & Carballido, B. V. (2023). Navigating the Ethical Challenges of Artificial Intelligence in Higher Education: An Analysis of Seven Global AI Ethics Policies. TEM journal, 12(2). http://doi.org/10.18421/TEM122-02 DOI: https://doi.org/10.18421/TEM122-02

Tarisayi, K. S. (2024). Strategic leadership for responsible artificial intelligence adoption in higher education. In CTE Workshop Proceedings, 11, 4-14. https://doi.org/10.55056/cte.616 DOI: https://doi.org/10.55056/cte.616

Thomas, J., & Harden, A. (2008). Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Medical Research Methodology, 8, 1-10. DOI: https://doi.org/10.1186/1471-2288-8-45

UW-Madison Library. (2022). Is it a policy, procedure, or guideline? Retrieved from https://development.policy.wisc.edu/2022/06/01/is-it-a-policy-procedure-or-guideline/

Wu, C., Zhang, H., & Carroll, J. M. (2024). AI governance in higher education: Case studies of guidance at Big Ten universities. arXiv preprint arXiv:2409.02017. https://doi.org/10.48550/arXiv.2409.02017 DOI: https://doi.org/10.3390/fi16100354

Téléchargements

Publié-e

2025-12-02

Comment citer

Gomes, M. G. S., Ramos, A. S. M., & Oliveira, K. de. (2025). Guidelines and frameworks of governance for the adoption of generative artificial intelligence in higher education institutions: a scoping review. Revista De Administração Da UFSM, 18(4), e1. https://doi.org/10.5902/1983465990871

Numéro

Rubrique

Articles

Articles similaires

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.